Magnetoelectric Response in Triangular Lattice Antiferromagnets

  • Shinichiro Seki
Part of the Springer Theses book series (Springer Theses)


Triangular lattice antiferromagnet is one of the simplest and most typical examples of frustrated spin system. When we assume classical Heisenberg spins and consider only the nearest neighbor interaction, 120 degree spin order becomes magnetic ground state. However, depending on the strength of next-nearest neighbor (or more distant) interaction and magnetic anisotropy, more complex magnetic order can also be realized. The purpose of this chapter is to investigate the magnetoelectric response of various types of magnetic order in triangular lattice. Interestingly, the geometry of triangular lattice often allows the appearance of magnetically-induced ferroelectricity that cannot be explained by either exchange striction or inverse D–M mechanism. Here, we pick up several layered oxides with delafossite or ordered rocksalt structure (CuFeO2 and CuCrO2) as well as layered halides with CdI2-type structure (MnI2), and attempt to clarify their origin of unique magnetoelectric coupling. We also performed several experiments from the viewpoints of impurity-doping effect, domain control, and dynamics.


Triangular Lattice Spin Order Magnetoelectric Coupling Magnetic Ground State Spin Chirality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Collins MF, Petrenko OA (1997) Triangular antiferromagnets. Can J Phys 75:605ADSCrossRefGoogle Scholar
  2. 2.
    Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO\(_2\). Phys Rev B 73:220401(R)Google Scholar
  3. 3.
    Zhao TR, Hasegawa M, Takei H (1996) Crystal growth and characterization of cuprous ferrite (CuFeO\(_2\)). J Cryst Growth 166:408ADSCrossRefGoogle Scholar
  4. 4.
    Mitsuda S, Mase M, Prokes K, Kitazawa H, Katori HA (2000) Field-induced magnetic phase transitions in a triangular lattice antiferromagnet CuFeO\(_2\) up to 14.5 T. J Phys Soc Jpn 69:3513Google Scholar
  5. 5.
    Mitsuda S, Yoshizawa H, Yaguchi N, Mekata M (1991) Neutron diffraction study of CuFeO\(_2\). J Phys Soc Jpn 60:1885ADSCrossRefGoogle Scholar
  6. 6.
    Nakajima T, Mitsuda S, Kanetsuki S, Prokes K, Podlesnyak A, Kimura H, Noda Y (2007) Spin noncollinearlity in multiferroic phase of triangular lattice antiferromagnet CuFe\(_{1-x}\)Al\(_x\)O\(_2\). J Phys Soc Jpn 76:043709ADSCrossRefGoogle Scholar
  7. 7.
    Mitsuda S, Kasahara N, Uno T, Mase M (1998) Partially disordered phase in frustrated triangular lattice antiferromagnet CuFeO\(_2\). J Phys Soc Jpn 67:4026ADSCrossRefGoogle Scholar
  8. 8.
    Nakajima T, Mitsuda S, Kanetsuki S, Tanaka K, Fujii K, Terada N, Soda M, Matsuura M, Hirota K (2008) Electric polarization induced by a proper helical magnetic ordering in a delafossite multiferroic CuFe\(_{1-x}\)Al\(_x\)O\(_2\). Phys Rev B 77:052401ADSCrossRefGoogle Scholar
  9. 9.
    Arima T (2007) Ferroelectricity induced by proper-screw type magnetic order. J Phys Soc Jpn 76:073702ADSCrossRefGoogle Scholar
  10. 10.
    Jia C, Onoda S, Nagaosa N, Han JH (2006) Bond electronic polarization induced by spin. Phys Rev B 74:224444ADSCrossRefGoogle Scholar
  11. 11.
    Terada N, Mitsuda S, Prokes K, Suzuki O, Kitazawa H, Katori HA (2004) Impact of a small number of nonmagnetic impurities on H-T magnetic phase diagram of CuFeO\(_2\). Phys Rev B 70:174412ADSCrossRefGoogle Scholar
  12. 12.
    Terada N, Kawasaki T, Mitsuda S, Kimura H, Noda Y (2005) Reinvestigation of magnetic structures for the thermally induced states of CuFe\(_{1-x}\)Al\(_x\)O\(_2\) (\(x = \)0.00, 0.02 and 0.05) using a four-circle neutron diffractometer. J Phys Soc Jpn 74:1561Google Scholar
  13. 13.
    Terada N, Mitsuda S, Suzuki S, Kawasaki T, Fukuda M, Nagao T, Katori HA (2004) Disappearance of quasi-ising character in triangular lattice antiferromagnet CuFeO\(_2\) by a small amount of substitution. J Phys Soc Jpn 73:1442ADSCrossRefGoogle Scholar
  14. 14.
    Burgy J, Mayr M, Martin-Mayor V, Moreo A, Dagotto E (2001) Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys Rev Lett 87:277202ADSCrossRefGoogle Scholar
  15. 15.
    Terada N, Mitsuda S, Fujii T, Soejima K, Doi I, Katori HA, Noda Y (2005) Magnetic phase diagram of the triangular lattice antiferromagnet CuFe\(_{1-x}\)Al\(_x\)O\(_2\). J Phys Soc Jpn 74:2604ADSCrossRefGoogle Scholar
  16. 16.
    Terada N, Nakajima T, Mitsuda S, Kitazawa H (2009) Magnetic phase diagram of multiferroic delafossite CuFe\(_{1-y}\)Ga\(_y\)O\(_2\). J Phys Conf Ser 145:012071ADSCrossRefGoogle Scholar
  17. 17.
    Nakajima T, Mitsuda S, Takahashi K, Yamano M, Masuda K, Yamazaki H, Prokes K, Kiefer K, Gerischer S, Terada N, Kitazawa H, Matsuda M, Kakurai K, Kimura H, Noda Y, Soda M, Mitsuda M, Hirota K (2009) Comprehensive study on ferroelectricity induced by a proper-screw-type magnetic ordering in multiferroic CuFeO\(_2\): nonmagnetic impurity effect on magnetic and ferroelectric order. Phys Rev B 79:214423ADSCrossRefGoogle Scholar
  18. 18.
    Terada N, Nakajima T, Mitsuda S, Kitazawa H, Kaneko K, Metoki N (2008) Ga-substitution-induced single ferroelectric phase in multiferroic CuFeO\(_2\). Phys Rev B 78:014101ADSCrossRefGoogle Scholar
  19. 19.
    Terada N, Mitsuda S, Fujii T, Petitgrand D (2007) Inelastic neutron scattering study of frustrated Heisenberg triangular magnet CuFeO\(_2\). J Phys Condens Matter 19:145241ADSCrossRefGoogle Scholar
  20. 20.
    Ye F, Fernandez-Baca JA, Fishman RS, Ren Y, Kang HJ, Qiu Y, Kimura T (2007) Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO\(_2\). Phys Rev Lett 99:157201ADSCrossRefGoogle Scholar
  21. 21.
    Fishman RS (2008) Spin waves in CuFeO\(_2\). J Appl Phys 103:07B109Google Scholar
  22. 22.
    Takagi T, Mekata M (1995) New partially disordered phases with commensurate spin density wave in frustrated triangular lattice. J Phys Soc Jpn 64:4609ADSCrossRefGoogle Scholar
  23. 23.
    Haraldsen JT, Swanson M, Alvarez G, Fishman RS (2009) Spin-wave instabilities and noncollinear magnetic phases of a geometrically frustrated triangular-lattice antiferromagnet. Phys Rev Lett 102:237204ADSCrossRefGoogle Scholar
  24. 24.
    Adachi K (1996) Magnetism of compounds—localized spin system. Shokabo, TokyoGoogle Scholar
  25. 25.
    Terada N, Nakajima T, Mitsuda S, Tanaka Y, Mamiya H, Kitazawa H (2010) Charge disproportionation associated with spin ordering in delafossite CuFeO\(_2\) as seen via resonant x-ray diffraction. Phys Rev B 81:064424ADSCrossRefGoogle Scholar
  26. 26.
    Ascher E, Rieder H, Schmid H, Sössel H (1966) Some properties of ferromagnetoelectric nickel–iodine boracite, Ni\(_3\)B\(_7\)O\(_{13}\)I. J Appl Phys 37:1404ADSCrossRefGoogle Scholar
  27. 27.
    Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694CrossRefGoogle Scholar
  28. 28.
    Schmid H (2008) Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter 20:434201ADSCrossRefGoogle Scholar
  29. 29.
    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy A, Fert A (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296ADSCrossRefGoogle Scholar
  30. 30.
    Yamasaki Y, Miyasaka S, Kaneko Y, He J-P, Arima T, Tokura Y (2006) Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett 96:207204ADSCrossRefGoogle Scholar
  31. 31.
    Abe N, Taniguchi K, Ohtani S, Takanobu T, Iwasa Y, Arima T (2007) Polarization reversal in multiferroic TbMnO\(_3\) with a rotating magnetic field direction. Phys Rev Lett 99:227206ADSCrossRefGoogle Scholar
  32. 32.
    Kagawa F, Mochizuki M, Onose Y, Murakawa H, Kaneko Y, Furukawa N, Tokura Y (2009) Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO\(_3\). Phys Rev Lett 102:057604ADSCrossRefGoogle Scholar
  33. 33.
    Taniguchi K, Abe N, Umetsu H, Katori HA, Arima T (2008) Control of the magnetoelectric domain-wall stability by a magnetic field in a multiferroic MnWO\(_4\). Phys Rev Lett 101:207205ADSCrossRefGoogle Scholar
  34. 34.
    Abe N, Taniguchi K, Ohtani S, Umetsu H, Arima T (2009) Control of the polarization flop direction by a tilted magnetic field in multiferroic TbMnO\(_3\). Phys Rev B 80:020402(R)Google Scholar
  35. 35.
    Murakawa H, Onose Y, Ohgushi K, Ishiwata S, Tokura Y (2008) Generation of electric polarization with rotating magnetic field in helimagnet ZnCr\(_2\)Se\(_4\). J Phys Soc Jpn 77:043709ADSCrossRefGoogle Scholar
  36. 36.
    Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205ADSCrossRefGoogle Scholar
  37. 37.
    Pimenov A, Mukhin AA, Ivanov VYu, Travkin VD, Balbashov AM, Loidl A (2006) Possible evidence for electromagnons in multiferroic manganites. Nat Phys 2:97CrossRefGoogle Scholar
  38. 38.
    Kida N, Ikebe Y, Takahashi Y, He JP, Kaneko Y, Yamasaki Y, Shimano R, Arima T, Nagaosa N, Tokura Y (2008) Electrically driven spin excitation in the ferroelectric magnet DyMnO\(_3\). Phys Rev B 78:104414ADSCrossRefGoogle Scholar
  39. 39.
    Sushkov AB, Aguilar RV, Park S, Cheong S-W, Drew HD (2007) Electromagnons in Multiferroic YMn\(_2\)O\(_5\) and TbMn\(_2\)O\(_5\). Phys Rev Lett 98:027202ADSCrossRefGoogle Scholar
  40. 40.
    Kida N, Okuyama D, Ishiwata S, Taguchi Y, Shimano R, Iwasa K, Arima T, Tokura Y (2009) Electric-dipole-active magnetic resonance in the conical-spin magnet Ba\(_2\)Mg\(_2\)Fe\(_{12}\)O\(_{22}\). Phys Rev B 80:220406(R)Google Scholar
  41. 41.
    Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y (2008) Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319:1643ADSCrossRefGoogle Scholar
  42. 42.
    Katsura H, Balatsky AV, Nagaosa N (2007) Dynamical magnetoelectric coupling in helical magnets. Phys Rev Lett 98:027203ADSCrossRefGoogle Scholar
  43. 43.
    Sushkov AB, Mostovoy M, Aguilar RV, Cheong S-W, Drew HD (2008) Electromagnons in multiferroic \(R\)Mn\(_2\)O\(_5\) compounds and their microscopic origin. J Phys Condens Matter 20:434210ADSCrossRefGoogle Scholar
  44. 44.
    Aguilar RV, Mostovoy M, Sushkov AB, Zhang CL, Choi YJ, Cheong S-W, Drew HD (2009) Origin of electromagnon excitations in multiferroic \(R\)MnO\(_3\). Phys Rev Lett 102:047203ADSCrossRefGoogle Scholar
  45. 45.
    Miyahara S, Furukawa N (2008) Theory of electric field induced one-magnon resonance in cycloidal spin magnets. arXiv:0811.4082Google Scholar
  46. 46.
    Mochizuki M, Furukawa N, Nagaosa N (2010) Theory of electromagnons in the multiferroic Mn perovskites: the vital role of higher harmonic components of the spiral spin order. Phys Rev Lett 104:177206ADSCrossRefGoogle Scholar
  47. 47.
    Fukuda T, Nojiri H, Motokawa M, Asano T, Mekata M, Ajiro Y (1998) Submillimeter wave ESR study on triangular lattice antiferromagnet CuFeO\(_2\). Phys B 246:569ADSCrossRefGoogle Scholar
  48. 48.
    Moriya T (1968) Theory of absorption and scattering of light by magnetic crystals. J Appl Phys 39:1042ADSCrossRefGoogle Scholar
  49. 49.
    Kenzelmann M, Lawes G, Harris AB, Gasparovic G, Broholm C, Ramirez AP, Jorge GA, Jaime M, Park S, Huang Q, Shapiro AY, Demianets LA (2007) Direct transition from a disordered to a multiferroic phase on a triangular lattice. Phys Rev Lett 98:267205ADSCrossRefGoogle Scholar
  50. 50.
    Angelov S, Doumerc JP (1991) On the correlation between the structure and the exchange interactions in \(A\)CrO\(_2\) chromites. Solid State Commun 77:213ADSCrossRefGoogle Scholar
  51. 51.
    Kadowaki H, Kikuchi H, Ajiro Y (1990) Neutron powder diffraction study of the two-dimensional triangular lattice antiferromagnet CuCrO\(_2\). J Phys Condens Matter 2:4485ADSCrossRefGoogle Scholar
  52. 52.
    Kadowaki H, Takei H, Motoya K (1995) Double-\(Q\) 120 degrees structure in the Heisenberg antiferromagnet on rhombohedrally stacked triangular lattice LiCrO\(_2\). J Phys Condens Matter 7:6869ADSCrossRefGoogle Scholar
  53. 53.
    Oohara Y, Mitsuda S, Yoshizawa H, Yaguchi N, Kuriyama H, Asano T, Mekata M (1994) Magnetic phase transition in AgCrO\(_2\). J Phys Soc Jpn 63:847ADSCrossRefGoogle Scholar
  54. 54.
    Alexander LK, Büttgen N, Nath R, Mahajan AV, Loidl A (2007) \(^7\)Li NMR studies on the triangular lattice system LiCrO\(_2\). Phys Rev B 76:064429ADSCrossRefGoogle Scholar
  55. 55.
    Soubeyroux JL, Fruchart D, Delmas C, Flem GL (1979) Neutron powder diffraction studies of two-dimensional magnetic oxides. J Magn Magn Mater 14:159ADSCrossRefGoogle Scholar
  56. 56.
    Olariu A, Mendels P, Bert F, Ueland BG, Schiffer P, Berger RF, Cava RJ (2006) Unconventional dynamics in triangular heisenberg antiferromagnet NaCrO\(_2\). Phys Rev Lett 97:167203ADSCrossRefGoogle Scholar
  57. 57.
    Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T, Tokura Y (2007) Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett 98:147204ADSCrossRefGoogle Scholar
  58. 58.
    Kimura K, Nakamura H, Ogushi K, Kimura T (2008) Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet. Phys Rev B 78:140401(R)Google Scholar
  59. 59.
    Kimura K, Nakamura H, Kimura S, Hagiwara M, Kimura T (2009) Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO\(_2\). Phys Rev Lett 103:107201ADSCrossRefGoogle Scholar
  60. 60.
    Soda M, Kimura K, Kimura T, Matsuura M, Hirota K (2009) Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO\(_2\) with proper-screw order. J Phys Soc Jpn 78:124703ADSCrossRefGoogle Scholar
  61. 61.
    Kimura K, Otani T, Nakamura H, Wakabayashi Y, Kimura T (2009) Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO\(_2\). J Phys Soc Jpn 78:113710ADSCrossRefGoogle Scholar
  62. 62.
    Soda M, Kimura K, Kimura T, Hirota K (2010) Domain rearrangement and spin-spiral-plane flop as sources of magnetoelectric effects in delafossite CuCrO\(_2\). Phys Rev B 81:100406ADSCrossRefGoogle Scholar
  63. 63.
    Kan EJ, Xiang HJ, Zhang Y, Lee C, Whangbo M-H (2009) Density-functional analysis of spin exchange and ferroelectric polarization in AgCrO\(_2\). Phys Rev B 80:104417ADSCrossRefGoogle Scholar
  64. 64.
    Singh K, Maignan A, Martin C, Simon Ch (2009) AgCrS\(_2\): a spin driven ferroelectric. Chem Mater 21:5007CrossRefGoogle Scholar
  65. 65.
    Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H-A, Tsurkan V, Loidl A (2005) Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr\(_2\)S\(_4\). Nat (Lond) 434:364ADSCrossRefGoogle Scholar
  66. 66.
    Catalan G, Scott JF (2007) Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr\(_2\)S\(_4\). Nat (Lond) 448:E4ADSCrossRefGoogle Scholar
  67. 67.
    Katsumata K (1994) Landolt-Bïrnstein, vol 3. Springer, Berlin, p 27J1Google Scholar
  68. 68.
    Sato T, Kadowaki H, Iio K (1995) Successive phase transitions in the hexagonal-layered Heisenberg antiferromagnets Mn\(X_2\) (\(X=\) Br, I). Phys B 213:224ADSCrossRefGoogle Scholar
  69. 69.
    Cable JW, Wilkinson MK, Wollan EO, Koehler WC (1962) Neutron diffraction investigation of the magnetic order in MnI\(_2\). Phys Rev 125:1860ADSCrossRefGoogle Scholar
  70. 70.
    Kuindersma SR, Sanchez JP, Haas C (1981) Magnetic and structural investigations on NiI\(_2\) and CoI\(_2\). Phys B 111:231Google Scholar
  71. 71.
    Kadowaki H, Ubukoshi K, Hirakawa K, Martinez JL, Shirane G (1987) Experimental study of new type phase transition in triangular lattice antiferromagnet VCl\(_2\). J Phys Soc Jpn 56:4027ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations