Skip to main content

Magnetoelectric Response in Triangular Lattice Antiferromagnets

  • Chapter
  • First Online:
Book cover Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Triangular lattice antiferromagnet is one of the simplest and most typical examples of frustrated spin system. When we assume classical Heisenberg spins and consider only the nearest neighbor interaction, 120 degree spin order becomes magnetic ground state. However, depending on the strength of next-nearest neighbor (or more distant) interaction and magnetic anisotropy, more complex magnetic order can also be realized. The purpose of this chapter is to investigate the magnetoelectric response of various types of magnetic order in triangular lattice. Interestingly, the geometry of triangular lattice often allows the appearance of magnetically-induced ferroelectricity that cannot be explained by either exchange striction or inverse D–M mechanism. Here, we pick up several layered oxides with delafossite or ordered rocksalt structure (CuFeO2 and CuCrO2) as well as layered halides with CdI2-type structure (MnI2), and attempt to clarify their origin of unique magnetoelectric coupling. We also performed several experiments from the viewpoints of impurity-doping effect, domain control, and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This distortion makes CuCl\(_2\) (with \(d^9\)) a quasi-one dimensional spin system. The magnetoelectric response of CuCl\(_2\) is discussed in “CuCl\(_2\) ”.

  2. 2.

    To be accurate, a small polarization remains even below the transition temperature of CM4 phase for \(x=0.01\) and increases with magnetic field. This is likely due to the phase coexistence of the CM4 and NC arising from the first-order transition nature [14].

  3. 3.

    In Ni\(_3\)B\(_7\)O\(_{13}\), ferroelectricity and weak ferromagnetism arise from different origins.

  4. 4.

    Here, we define the magnetic \(q\)-vector as the director with no \(+/-\) sign.

  5. 5.

    This multiferroic domain wall shows dielectric relaxation behavior in the frequency range of \(1 \sim 0.1\) MHz, which turns out to be the origin of giant magnetocapacitance effect observed in DyMnO\(_3\) [32].

  6. 6.

    Symmetry of triangular lattice allows the existence of three equivalent \(\vec {q} \parallel \langle 110 \rangle \). The presently observed spectra reflect the contributions from all the three \(q\)-domains.

  7. 7.

    To further check the validity of this approximation, we deduced \(\epsilon \mu \) spectrum assuming \(\mu = 1.1 + 0.1i\) for the pre-exponential factor in Eq. (3.3). The result coincides with the one calculated with the original \(\mu = 1\) assumption within the experimental error.

  8. 8.

    We also measured the Im[\(\epsilon \mu \)] spectrum for the \(x=0.035\) specimen under the \(E \parallel [001]\) and \(H \parallel [1\bar{1}0]\) condition, but no peak structure could be observed.

  9. 9.

    Our present results imply that the resonance modes found in the previous ESR study [47] is primarily driven by \(E^\omega \)-component of incident microwave.

  10. 10.

    Recent neutron scattering study on single crystal reported \(q \sim 0.329\) for CuCrO\(_2\) [60], which slightly deviates from the ideal \(q = 1/3\) of 120\(^\circ \)-spin order. While this may allow the appearance of \(q\)-domains, the most of energy gain under applied magnetic field would still come from the reorientation of spin–spiral plane. Thus, in the following argument, we ignore the slight deviation from \(q \sim 1/3\), which has recently been suggested to be related with the tiny local lattice distortion in the magnetic ordered phase [61]. The slight deviation from the \(\theta _H \sim \theta _P\) relationship in Fig. 3.32b may be associated with this weak incommensurability and/or small lattice distortion.

  11. 11.

    The coupling between the spin-chirality and the sign of \(P\), as well as \(E\)-control of spin-chirality, has recently been experimentally confirmed for CuCrO\(_2\) by polarized neutron scattering study [62].

  12. 12.

    In CuFe\(_{1-x}\)Ga\(_{x}\)O\(_2\), such smooth rotation of spin–spiral plane cannot be observed. This implies that CuFe\(_{1-x}\)Ga\(_{x}\)O\(_2\) possesses larger in-plane magnetic anisotropy than CuCrO\(_2\).

  13. 13.

    Note that for \(M= \) Cu (\(d^9\)) or Cr (\(d^4\)), Jahn Teller effect causes the distortion of the original crystal structure. The results for CuCl\(_2\) with distorted triangular lattice are summarized in “CuCl\(_2\) ”.

  14. 14.

    The detail of this process is described in “Magnetic Digital Flop of Ferroelectric Domain”.

  15. 15.

    Polarized neutron diffraction on CuFe\(_{1-x}\)Ga\(_{x}\)O\(_2\) has confirmed the applied \(E\) affects only the chirality of spin–spiral, not the direction of \(q\)-vector.

  16. 16.

    For the \(P\)-profile at 5 T, the specimen was cooled with \(H \parallel E \parallel [110]\) to obtain the uniform single domain state with \(P \parallel [110]\) as shown in Fig. 3.42f.

  17. 17.

    While the transition from \(q_\mathrm in \parallel \langle 1\bar{1}0 \rangle \) phase to \(q \parallel \langle 110 \rangle \) phase is completed below 3 T in \(M\)-profile, the corresponding transition field seems to be slightly higher in \(P\)-profile. This may come from the small deviation of temperature between these measurements.

References

  1. Collins MF, Petrenko OA (1997) Triangular antiferromagnets. Can J Phys 75:605

    Article  ADS  Google Scholar 

  2. Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO\(_2\). Phys Rev B 73:220401(R)

    Google Scholar 

  3. Zhao TR, Hasegawa M, Takei H (1996) Crystal growth and characterization of cuprous ferrite (CuFeO\(_2\)). J Cryst Growth 166:408

    Article  ADS  Google Scholar 

  4. Mitsuda S, Mase M, Prokes K, Kitazawa H, Katori HA (2000) Field-induced magnetic phase transitions in a triangular lattice antiferromagnet CuFeO\(_2\) up to 14.5 T. J Phys Soc Jpn 69:3513

    Google Scholar 

  5. Mitsuda S, Yoshizawa H, Yaguchi N, Mekata M (1991) Neutron diffraction study of CuFeO\(_2\). J Phys Soc Jpn 60:1885

    Article  ADS  Google Scholar 

  6. Nakajima T, Mitsuda S, Kanetsuki S, Prokes K, Podlesnyak A, Kimura H, Noda Y (2007) Spin noncollinearlity in multiferroic phase of triangular lattice antiferromagnet CuFe\(_{1-x}\)Al\(_x\)O\(_2\). J Phys Soc Jpn 76:043709

    Article  ADS  Google Scholar 

  7. Mitsuda S, Kasahara N, Uno T, Mase M (1998) Partially disordered phase in frustrated triangular lattice antiferromagnet CuFeO\(_2\). J Phys Soc Jpn 67:4026

    Article  ADS  Google Scholar 

  8. Nakajima T, Mitsuda S, Kanetsuki S, Tanaka K, Fujii K, Terada N, Soda M, Matsuura M, Hirota K (2008) Electric polarization induced by a proper helical magnetic ordering in a delafossite multiferroic CuFe\(_{1-x}\)Al\(_x\)O\(_2\). Phys Rev B 77:052401

    Article  ADS  Google Scholar 

  9. Arima T (2007) Ferroelectricity induced by proper-screw type magnetic order. J Phys Soc Jpn 76:073702

    Article  ADS  Google Scholar 

  10. Jia C, Onoda S, Nagaosa N, Han JH (2006) Bond electronic polarization induced by spin. Phys Rev B 74:224444

    Article  ADS  Google Scholar 

  11. Terada N, Mitsuda S, Prokes K, Suzuki O, Kitazawa H, Katori HA (2004) Impact of a small number of nonmagnetic impurities on H-T magnetic phase diagram of CuFeO\(_2\). Phys Rev B 70:174412

    Article  ADS  Google Scholar 

  12. Terada N, Kawasaki T, Mitsuda S, Kimura H, Noda Y (2005) Reinvestigation of magnetic structures for the thermally induced states of CuFe\(_{1-x}\)Al\(_x\)O\(_2\) (\(x = \)0.00, 0.02 and 0.05) using a four-circle neutron diffractometer. J Phys Soc Jpn 74:1561

    Google Scholar 

  13. Terada N, Mitsuda S, Suzuki S, Kawasaki T, Fukuda M, Nagao T, Katori HA (2004) Disappearance of quasi-ising character in triangular lattice antiferromagnet CuFeO\(_2\) by a small amount of substitution. J Phys Soc Jpn 73:1442

    Article  ADS  Google Scholar 

  14. Burgy J, Mayr M, Martin-Mayor V, Moreo A, Dagotto E (2001) Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys Rev Lett 87:277202

    Article  ADS  Google Scholar 

  15. Terada N, Mitsuda S, Fujii T, Soejima K, Doi I, Katori HA, Noda Y (2005) Magnetic phase diagram of the triangular lattice antiferromagnet CuFe\(_{1-x}\)Al\(_x\)O\(_2\). J Phys Soc Jpn 74:2604

    Article  ADS  Google Scholar 

  16. Terada N, Nakajima T, Mitsuda S, Kitazawa H (2009) Magnetic phase diagram of multiferroic delafossite CuFe\(_{1-y}\)Ga\(_y\)O\(_2\). J Phys Conf Ser 145:012071

    Article  ADS  Google Scholar 

  17. Nakajima T, Mitsuda S, Takahashi K, Yamano M, Masuda K, Yamazaki H, Prokes K, Kiefer K, Gerischer S, Terada N, Kitazawa H, Matsuda M, Kakurai K, Kimura H, Noda Y, Soda M, Mitsuda M, Hirota K (2009) Comprehensive study on ferroelectricity induced by a proper-screw-type magnetic ordering in multiferroic CuFeO\(_2\): nonmagnetic impurity effect on magnetic and ferroelectric order. Phys Rev B 79:214423

    Article  ADS  Google Scholar 

  18. Terada N, Nakajima T, Mitsuda S, Kitazawa H, Kaneko K, Metoki N (2008) Ga-substitution-induced single ferroelectric phase in multiferroic CuFeO\(_2\). Phys Rev B 78:014101

    Article  ADS  Google Scholar 

  19. Terada N, Mitsuda S, Fujii T, Petitgrand D (2007) Inelastic neutron scattering study of frustrated Heisenberg triangular magnet CuFeO\(_2\). J Phys Condens Matter 19:145241

    Article  ADS  Google Scholar 

  20. Ye F, Fernandez-Baca JA, Fishman RS, Ren Y, Kang HJ, Qiu Y, Kimura T (2007) Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO\(_2\). Phys Rev Lett 99:157201

    Article  ADS  Google Scholar 

  21. Fishman RS (2008) Spin waves in CuFeO\(_2\). J Appl Phys 103:07B109

    Google Scholar 

  22. Takagi T, Mekata M (1995) New partially disordered phases with commensurate spin density wave in frustrated triangular lattice. J Phys Soc Jpn 64:4609

    Article  ADS  Google Scholar 

  23. Haraldsen JT, Swanson M, Alvarez G, Fishman RS (2009) Spin-wave instabilities and noncollinear magnetic phases of a geometrically frustrated triangular-lattice antiferromagnet. Phys Rev Lett 102:237204

    Article  ADS  Google Scholar 

  24. Adachi K (1996) Magnetism of compounds—localized spin system. Shokabo, Tokyo

    Google Scholar 

  25. Terada N, Nakajima T, Mitsuda S, Tanaka Y, Mamiya H, Kitazawa H (2010) Charge disproportionation associated with spin ordering in delafossite CuFeO\(_2\) as seen via resonant x-ray diffraction. Phys Rev B 81:064424

    Article  ADS  Google Scholar 

  26. Ascher E, Rieder H, Schmid H, Sössel H (1966) Some properties of ferromagnetoelectric nickel–iodine boracite, Ni\(_3\)B\(_7\)O\(_{13}\)I. J Appl Phys 37:1404

    Article  ADS  Google Scholar 

  27. Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694

    Article  Google Scholar 

  28. Schmid H (2008) Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter 20:434201

    Article  ADS  Google Scholar 

  29. Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy A, Fert A (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296

    Article  ADS  Google Scholar 

  30. Yamasaki Y, Miyasaka S, Kaneko Y, He J-P, Arima T, Tokura Y (2006) Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett 96:207204

    Article  ADS  Google Scholar 

  31. Abe N, Taniguchi K, Ohtani S, Takanobu T, Iwasa Y, Arima T (2007) Polarization reversal in multiferroic TbMnO\(_3\) with a rotating magnetic field direction. Phys Rev Lett 99:227206

    Article  ADS  Google Scholar 

  32. Kagawa F, Mochizuki M, Onose Y, Murakawa H, Kaneko Y, Furukawa N, Tokura Y (2009) Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO\(_3\). Phys Rev Lett 102:057604

    Article  ADS  Google Scholar 

  33. Taniguchi K, Abe N, Umetsu H, Katori HA, Arima T (2008) Control of the magnetoelectric domain-wall stability by a magnetic field in a multiferroic MnWO\(_4\). Phys Rev Lett 101:207205

    Article  ADS  Google Scholar 

  34. Abe N, Taniguchi K, Ohtani S, Umetsu H, Arima T (2009) Control of the polarization flop direction by a tilted magnetic field in multiferroic TbMnO\(_3\). Phys Rev B 80:020402(R)

    Google Scholar 

  35. Murakawa H, Onose Y, Ohgushi K, Ishiwata S, Tokura Y (2008) Generation of electric polarization with rotating magnetic field in helimagnet ZnCr\(_2\)Se\(_4\). J Phys Soc Jpn 77:043709

    Article  ADS  Google Scholar 

  36. Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205

    Article  ADS  Google Scholar 

  37. Pimenov A, Mukhin AA, Ivanov VYu, Travkin VD, Balbashov AM, Loidl A (2006) Possible evidence for electromagnons in multiferroic manganites. Nat Phys 2:97

    Article  Google Scholar 

  38. Kida N, Ikebe Y, Takahashi Y, He JP, Kaneko Y, Yamasaki Y, Shimano R, Arima T, Nagaosa N, Tokura Y (2008) Electrically driven spin excitation in the ferroelectric magnet DyMnO\(_3\). Phys Rev B 78:104414

    Article  ADS  Google Scholar 

  39. Sushkov AB, Aguilar RV, Park S, Cheong S-W, Drew HD (2007) Electromagnons in Multiferroic YMn\(_2\)O\(_5\) and TbMn\(_2\)O\(_5\). Phys Rev Lett 98:027202

    Article  ADS  Google Scholar 

  40. Kida N, Okuyama D, Ishiwata S, Taguchi Y, Shimano R, Iwasa K, Arima T, Tokura Y (2009) Electric-dipole-active magnetic resonance in the conical-spin magnet Ba\(_2\)Mg\(_2\)Fe\(_{12}\)O\(_{22}\). Phys Rev B 80:220406(R)

    Google Scholar 

  41. Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y (2008) Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319:1643

    Article  ADS  Google Scholar 

  42. Katsura H, Balatsky AV, Nagaosa N (2007) Dynamical magnetoelectric coupling in helical magnets. Phys Rev Lett 98:027203

    Article  ADS  Google Scholar 

  43. Sushkov AB, Mostovoy M, Aguilar RV, Cheong S-W, Drew HD (2008) Electromagnons in multiferroic \(R\)Mn\(_2\)O\(_5\) compounds and their microscopic origin. J Phys Condens Matter 20:434210

    Article  ADS  Google Scholar 

  44. Aguilar RV, Mostovoy M, Sushkov AB, Zhang CL, Choi YJ, Cheong S-W, Drew HD (2009) Origin of electromagnon excitations in multiferroic \(R\)MnO\(_3\). Phys Rev Lett 102:047203

    Article  ADS  Google Scholar 

  45. Miyahara S, Furukawa N (2008) Theory of electric field induced one-magnon resonance in cycloidal spin magnets. arXiv:0811.4082

    Google Scholar 

  46. Mochizuki M, Furukawa N, Nagaosa N (2010) Theory of electromagnons in the multiferroic Mn perovskites: the vital role of higher harmonic components of the spiral spin order. Phys Rev Lett 104:177206

    Article  ADS  Google Scholar 

  47. Fukuda T, Nojiri H, Motokawa M, Asano T, Mekata M, Ajiro Y (1998) Submillimeter wave ESR study on triangular lattice antiferromagnet CuFeO\(_2\). Phys B 246:569

    Article  ADS  Google Scholar 

  48. Moriya T (1968) Theory of absorption and scattering of light by magnetic crystals. J Appl Phys 39:1042

    Article  ADS  Google Scholar 

  49. Kenzelmann M, Lawes G, Harris AB, Gasparovic G, Broholm C, Ramirez AP, Jorge GA, Jaime M, Park S, Huang Q, Shapiro AY, Demianets LA (2007) Direct transition from a disordered to a multiferroic phase on a triangular lattice. Phys Rev Lett 98:267205

    Article  ADS  Google Scholar 

  50. Angelov S, Doumerc JP (1991) On the correlation between the structure and the exchange interactions in \(A\)CrO\(_2\) chromites. Solid State Commun 77:213

    Article  ADS  Google Scholar 

  51. Kadowaki H, Kikuchi H, Ajiro Y (1990) Neutron powder diffraction study of the two-dimensional triangular lattice antiferromagnet CuCrO\(_2\). J Phys Condens Matter 2:4485

    Article  ADS  Google Scholar 

  52. Kadowaki H, Takei H, Motoya K (1995) Double-\(Q\) 120 degrees structure in the Heisenberg antiferromagnet on rhombohedrally stacked triangular lattice LiCrO\(_2\). J Phys Condens Matter 7:6869

    Article  ADS  Google Scholar 

  53. Oohara Y, Mitsuda S, Yoshizawa H, Yaguchi N, Kuriyama H, Asano T, Mekata M (1994) Magnetic phase transition in AgCrO\(_2\). J Phys Soc Jpn 63:847

    Article  ADS  Google Scholar 

  54. Alexander LK, Büttgen N, Nath R, Mahajan AV, Loidl A (2007) \(^7\)Li NMR studies on the triangular lattice system LiCrO\(_2\). Phys Rev B 76:064429

    Article  ADS  Google Scholar 

  55. Soubeyroux JL, Fruchart D, Delmas C, Flem GL (1979) Neutron powder diffraction studies of two-dimensional magnetic oxides. J Magn Magn Mater 14:159

    Article  ADS  Google Scholar 

  56. Olariu A, Mendels P, Bert F, Ueland BG, Schiffer P, Berger RF, Cava RJ (2006) Unconventional dynamics in triangular heisenberg antiferromagnet NaCrO\(_2\). Phys Rev Lett 97:167203

    Article  ADS  Google Scholar 

  57. Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T, Tokura Y (2007) Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett 98:147204

    Article  ADS  Google Scholar 

  58. Kimura K, Nakamura H, Ogushi K, Kimura T (2008) Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet. Phys Rev B 78:140401(R)

    Google Scholar 

  59. Kimura K, Nakamura H, Kimura S, Hagiwara M, Kimura T (2009) Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO\(_2\). Phys Rev Lett 103:107201

    Article  ADS  Google Scholar 

  60. Soda M, Kimura K, Kimura T, Matsuura M, Hirota K (2009) Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO\(_2\) with proper-screw order. J Phys Soc Jpn 78:124703

    Article  ADS  Google Scholar 

  61. Kimura K, Otani T, Nakamura H, Wakabayashi Y, Kimura T (2009) Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO\(_2\). J Phys Soc Jpn 78:113710

    Article  ADS  Google Scholar 

  62. Soda M, Kimura K, Kimura T, Hirota K (2010) Domain rearrangement and spin-spiral-plane flop as sources of magnetoelectric effects in delafossite CuCrO\(_2\). Phys Rev B 81:100406

    Article  ADS  Google Scholar 

  63. Kan EJ, Xiang HJ, Zhang Y, Lee C, Whangbo M-H (2009) Density-functional analysis of spin exchange and ferroelectric polarization in AgCrO\(_2\). Phys Rev B 80:104417

    Article  ADS  Google Scholar 

  64. Singh K, Maignan A, Martin C, Simon Ch (2009) AgCrS\(_2\): a spin driven ferroelectric. Chem Mater 21:5007

    Article  Google Scholar 

  65. Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H-A, Tsurkan V, Loidl A (2005) Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr\(_2\)S\(_4\). Nat (Lond) 434:364

    Article  ADS  Google Scholar 

  66. Catalan G, Scott JF (2007) Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr\(_2\)S\(_4\). Nat (Lond) 448:E4

    Article  ADS  Google Scholar 

  67. Katsumata K (1994) Landolt-Bïrnstein, vol 3. Springer, Berlin, p 27J1

    Google Scholar 

  68. Sato T, Kadowaki H, Iio K (1995) Successive phase transitions in the hexagonal-layered Heisenberg antiferromagnets Mn\(X_2\) (\(X=\) Br, I). Phys B 213:224

    Article  ADS  Google Scholar 

  69. Cable JW, Wilkinson MK, Wollan EO, Koehler WC (1962) Neutron diffraction investigation of the magnetic order in MnI\(_2\). Phys Rev 125:1860

    Article  ADS  Google Scholar 

  70. Kuindersma SR, Sanchez JP, Haas C (1981) Magnetic and structural investigations on NiI\(_2\) and CoI\(_2\). Phys B 111:231

    Google Scholar 

  71. Kadowaki H, Ubukoshi K, Hirakawa K, Martinez JL, Shirane G (1987) Experimental study of new type phase transition in triangular lattice antiferromagnet VCl\(_2\). J Phys Soc Jpn 56:4027

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Seki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Seki, S. (2012). Magnetoelectric Response in Triangular Lattice Antiferromagnets. In: Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54091-5_3

Download citation

Publish with us

Policies and ethics