Advertisement

Introduction

  • Shinichiro Seki
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Magnetoelectric effects, the electric control of magnetic properties or its inverse effect, have been studied for long because of its potential for novel physics and application. “Multiferroics” means material with both dielectric and magnetic orders. Since 1960s, this group of materials has been expected to show large magnetoelectric effects, although so far only few multiferroics have been discovered and the coupling between magnetic and dielectric properties are very weak in general. Recently (2003-), however, some frustrated magnets with a spiral spin order have been reported to show ferroelectricity. In this group of multiferroics, the ferroelectricity is coupled with the spiral spin order, which enables the magnetic control of dielectric properties via phase transition. Magnetic frustration sometimes reduces the symmetry of spin structure, which is now believed to affect the symmetry of charge distribution and induces ferroelectricity. In this chapter, a brief history of the study of magnetoelectric effects, as well as the aim of this thesis, are provided.

Keywords

Magnetoelectric Effect Spin Order Magnetoelectric Coupling Magnetic Frustration Magnetic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123ADSCrossRefGoogle Scholar
  2. 2.
    Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Sov Phys Usp 25:475ADSCrossRefGoogle Scholar
  3. 3.
    Schmid H (2008) Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter 20:434201Google Scholar
  4. 4.
    Tokura Y (2006) Multiferroics as quantum electromagnets. Science 312:1481CrossRefGoogle Scholar
  5. 5.
    Cheong S-W, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13ADSCrossRefGoogle Scholar
  6. 6.
    Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nat Mater 442:759CrossRefGoogle Scholar
  7. 7.
    Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. Sov Phys JETP 11:708Google Scholar
  8. 8.
    Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694CrossRefGoogle Scholar
  9. 9.
    Khomskii DI (2001) Magnetism and ferroelectricity: why do they so seldom coexist? Bull Am Phys Soc C21:002Google Scholar
  10. 10.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Magnetic control of ferroelectric polarization. Nature (London) 426:55Google Scholar
  11. 11.
    Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J, Kim SB, Zhang CL, Cheong S-W, Vajk OP, Lynn JW (2005) Magnetic inversion symmetry breaking and ferroelectricity in TbMnO\(_3\). Phys Rev Lett 95:087206Google Scholar
  12. 12.
    Arima T, Tokunaga A, Goto T, Kimura H, Noda Y, Tokura Y (2006) Collinear to spiral spin transformation without changing the modulation wavelength upon ferroelectric transition in Tb\(_{1-x}\)Dy\(_x\)MnO\(_3\). Phys Rev Lett 96:097202ADSCrossRefGoogle Scholar
  13. 13.
    Aliouane N, Schmalzl K, Senff D, Maljuk A, Prokes K, Braden M, Argyriou DN (2009) Flop of electric polarization driven by the flop of the Mn spin Cycloid in multiferroic TbMnO\(_3\). Phys Rev Lett 102:207205ADSCrossRefGoogle Scholar
  14. 14.
    Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y (2004) Ferroelectricity and giant magnetocapacitance in perovskite Rare-Earth manganites. Phys Rev Lett 92:257201ADSCrossRefGoogle Scholar
  15. 15.
    Kimura T, Lawes G, Goto T, Tokura Y, Ramirez AP (2005) Magnetoelectric phase diagrams of orthorhombic \(R\)MnO\(_3\) (\(R\) = Gd, Tb, and Dy). Phys Rev B 71:224425ADSCrossRefGoogle Scholar
  16. 16.
    Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong S-W (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature (London) 429:392Google Scholar
  17. 17.
    Lawes G, Harris AB, Kimura T, Rogado N, Cava RJ, Aharony A, Entin-Wohlman O, Yildrim T, Kenzelmann M, Broholm C, Ramirez AP (2005) Magnetically driven ferroelectric order in Ni\(_3\)V\(_2\)O\(_8\). Phys Rev Lett 95:087205ADSCrossRefGoogle Scholar
  18. 18.
    Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T (2006) Ferroelectric polarization flop in a frustrated magnet MnWO\(_4\) induced by a magnetic field. Phys Rev Lett 97:097203ADSCrossRefGoogle Scholar
  19. 19.
    Yamasaki Y, Miyasaka S, Kaneko Y, He J-P, Arima T, Tokura Y (2006) Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett 96:207204ADSCrossRefGoogle Scholar
  20. 20.
    Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO\(_2\). Phys Rev B 73:220401(R)Google Scholar
  21. 21.
    Park S, Choi YJ, Zhang CL, Cheong S-W (2007) Ferroelectricity in an \(S=1/2\) chain cuprate. Phys Rev Lett 98:057601ADSCrossRefGoogle Scholar
  22. 22.
    Kimura T, Lawes G, Ramirez AP (2005) Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys Rev Lett 94:137201ADSCrossRefGoogle Scholar
  23. 23.
    Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez AP (2008) Cupric oxide as an induced-multiferroic with high-\(T_C\). Nat Mater 7:291ADSCrossRefGoogle Scholar
  24. 24.
    Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120:91ADSCrossRefGoogle Scholar
  25. 25.
    Nagamiya T (1968) Helical spin ordering-1 theory of helical spin configurations. Solid state phys 20:305CrossRefGoogle Scholar
  26. 26.
    Miyashita S, Shiba H (1984) Nature of the phase transition of the two-dimensional antiferromagnetic plane rotator model on the triangular lattice. J Phys Soc Jpn 53:1145ADSCrossRefGoogle Scholar
  27. 27.
    Greedan JE (2001) Geometrically frustrated magnetic materials. J Mater Chem 11:37CrossRefGoogle Scholar
  28. 28.
    Choi YJ, Yi HT, Lee S, Huang Q, Kiryukhin V, Cheong S-W (2008) Ferroelectricity in an Ising chain magnet. Phys Rev Lett 100:047601Google Scholar
  29. 29.
    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y (2009) Composite domain walls in a multiferroic perovskite ferrite. Nat Mater 8:558ADSCrossRefGoogle Scholar
  30. 30.
    Tokunaga Y, Iguchi S, Arima T, Tokura Y (2008) Magnetic-field-induced ferroelectric state in DyFeO\(_3\). Phys Rev Lett 101:097205ADSCrossRefGoogle Scholar
  31. 31.
    Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205ADSCrossRefGoogle Scholar
  32. 32.
    Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B 73:094434ADSCrossRefGoogle Scholar
  33. 33.
    Mostovoy M (2006) Ferroelectricity in spiral magnets. Phys Rev Lett 96:067601ADSCrossRefGoogle Scholar
  34. 34.
    Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T, Tokura Y (2007) Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett 98:147204ADSCrossRefGoogle Scholar
  35. 35.
    Xiang HJ, Wei SH, Whangbo M-H, Da Silva JLF (2008) Spin-orbit coupling and ion displacements in multiferroic TbMnO\(_3\). Phys Rev Lett 101:037209ADSCrossRefGoogle Scholar
  36. 36.
    Malashevich A, Vanderbilt D (2008) First principles study of improper ferroelectricity in TbMnO\(_3\). Phys Rev Lett 101:037210ADSCrossRefGoogle Scholar
  37. 37.
    Naito Y, Sato K, Yasui Y, Kobayashi Y, Kobayashi Y, Sato M (2007) Ferroelectric transition induced by the incommensurate magnetic ordering in LiCuVO\(_4\) J Phys Soc Jpn 76:023708Google Scholar
  38. 38.
    Murakawa H, Onose Y, Ohgushi K, Ishiwata S, Tokura Y (2008) Generation of electric polarization with rotating magnetic field in helimagnet ZnCr\(_2\)Se\(_4\) J Phys Soc Jpn 77:043709Google Scholar
  39. 39.
    Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y (2008) Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319:1643ADSCrossRefGoogle Scholar
  40. 40.
    Kenzelmann M, Lawes G, Harris AB, Gasparovic G, Broholm C, Ramirez AP, Jorge GA, Jaime M, Park S, Huang Q, Shapiro AY, Demianets LA (2007) Direct transition from a disordered to a multiferroic phase on a triangular lattice. Phys Rev Lett 98:267205ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations