Skip to main content

Mechanics of Biosolids and Computational Analysis

  • Chapter
Book cover Computational Biomechanics

Part of the book series: A First Course in “In Silico Medicine” ((FCISM,volume 3))

  • 1830 Accesses

Behaviours of solid biological bodies are described in the context of solid mechanics. As is glanced in Chap. 1, load and deformation are characterized by stress and strain. They are introduced for one-dimensional mechanics in Sect. 1.2. First, this chapter gives their extension to three-dimensional mechanics under a small strain theory and a finite strain theory. It is followed by description of constitutive equations of linear elastic body and nonlinear hyperelastic bodies. Although biosolids behave as a viscoelastic body in general, the linear elasticity is a reasonably accounts for their behaviour as far as the deformation is small. Especially, the linear elastic theory works for hard biosolids such as bones in a physiological daily activity range. The linear elasticity is also useful for the first step of biomechanical analyses within the range of small deformation. For the finite deformations, a cyclic response in the physiological range is characterized by the concept of pseudo-elasticity with hyperelasticity. Second, constitutive equations are demonstrated for cortical bone and cancellous bone as a linear elastic body and for several soft tissues of an arterial wall, a skin and a cornea as typical examples of a nonlinear hyperelastic body. Third, an equilibrium problem is given as in the form of a virtual work and a stationary potential energy for linear elastic and nonlinear hyperelastic bodies. These provide us the basis for computational analyses of biosolids. Fourth, the fundamentals of a finite element method are given for a small strain theory and for a finite strain theory. Concept of the finite element approximation is explained for typical elements and the finite element equations are derived. Fifth, several computational biomechanics analyses are presented for orthopaedic, dental and ophthalmic biomechanics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cartesian coordinate system is employed throughout this chapter unless otherwise noted. That is, all the components are Cartesian components.

  2. 2.

    Stress components \( {\sigma ^\prime_{{ij}}} \) in an \( {x^\prime_i} \)-coordinate system is calculated by using those \( {\sigma_{{ij}}} \) in an \( {x_i} \)-coordinate system as \( {\sigma ^\prime_{{ij}}} = \mathop{\sum }\limits_k \!\mathop{\sum }\limits_l {a_{{ik}}}{a_{{jl}}}{\sigma_{{kl}}} \), where \( {a_{{ij}}} \) is components of the rotation matrix, or \( ({\sigma ^\prime_{{ij}}}) = ({a_{{ik}}})({\sigma_{{kl}}}){({a_{{jl}}})^T} \)in matrix notation.

  3. 3.

    Rules of summation convention are (1) each index can appear once or twice in any term and (2) every index appeared twice is summed over its range. For example, \( {a_{{ii}}} = \sum\limits_i {{a_{{ii}}}} = {a_{{11}}} +<$><$>{a_{{22}}} + {a_{{33}}} = \sum\limits_j {{a_{{jj}}} = {a_{{jj}}}} \), \( {a_{{ij}}}{b_j} = \sum\limits_j {{a_{{ij}}}{b_j}} = {a_{{i1}}}{b_1} + {a_{{i2}}}{b_2} + {a_{{i3}}}{b_3} \). Expression \( {a_{{ij}}}{b_i} = {c_j} \) and \( {a_{{ij}}}{b_j} + {c_{{ji}}}{d_j} \) are valid, but \( {a_{{jj}}}{b_j} \) and \( {a_{{ij}}}{b_j} = {c_j} \) are invalid.

  4. 4.

    This is the Voigt notation in vector form.

  5. 5.

    Kronecker-\( \delta \) tensor is defined as \( {\delta_{{ij}}} =\left\{ {\begin{array}{lll} 1 & {\hbox{when}} & {{{i}} = {{j}}} \\0 & {\hbox{when}} & {{{i}} \ne {{j}}} \\\end{array} } \right. \). It corresponds unit matrix, e.g. \( ({\delta_{{ij}}}) = {\left[ {\begin{array}{lllll} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{array}} \right] }\) in three dimensions, and replaces the index as \( {\delta_{{ij}}}{a_i} = {a_j} \).

  6. 6.

    The ratio \( \frac{{{\rho_0}}}{\rho } \) is reciprocal of the volume ratio \( J = \frac{V}{{{V_0}}} \) of volume element deformed and undefromed because of conservation law \( {V_0}{\rho_0} = V\rho \). cf. (2.42).

  7. 7.

    Here the strain energy density function \( W \) is defined first for a unit mass, then that for a unit volume is represented by \( {\rho_0}W \). The strain energy function for a unit volume comes first is an alternative as employed in other textbook.

  8. 8.

    The stress–strain curve is strain-rate dependent and is approximated by Ramberg–Osgood model. That is, Young’s modulus is described as a power function of strain rate, but the effect of strain rate on it is as much as 15% in daily activity (Cowin 1989).

  9. 9.

    The concept of a confidential interval in data fitted to the constitutive model and the problem of exterpolation are not limited to the constitutive models of cortical bone in this section. These points become more severely important for constitutive models for soft tissues exhibiting a strong nonlinearity found in the following sections.

  10. 10.

    Throughout Sect. 2.3, notations in the original articles are used as much as possible in order to make further reference to the details easier.

  11. 11.

    Green strain components \( {E_1} \) and \( {E_2} \) denotes the normal strain components \( {E_{{11}}} = {E_{{\theta \theta }}} \) in circumferential direction \( {x_1} \) and \( {E_{{22}}} = {E_{{zz}}} \) in longitudinal direction \( {x_2} \), respectively.

  12. 12.

    This constitutive model uses the modified right Cauchy–Green tensor \( {\hat{C}_{{ij}}} \), and \( {\hat{{\rm I}}_l} \) denotes their invariants. Some fundamental variables in modified components are given by \( {F_{{ij}}} = {J^{{1/3}}}{\hat{F}_{{ij}}} \), \( {C_{{ij}}} = {J^{{2/3}}}{\hat{C}_{{ij}}} \), \( {\hat{C}_{{ij}}} = {\hat{F}_{{ki}}}{\hat{F}_{{kj}}} \), \( {E_{{ij}}} = {J^{{2/3}}}{E_{{ij}}} + \frac{1}{2}({J^{{2/3}}} - 1){\delta_{{ij}}} \) and \( {\hat{E}_{{ij}}} = \frac{1}{2}({\hat{C}_{{ij}}} - {\delta_{{ij}}}) \).

  13. 13.

    The notation \( ({ }){,_i} \) stands for the partial derivative \( \frac{{\partial ({ })}}{{\partial {x_i}}} \) with respect to the coordinates \( {x_i} \). That is, \( {\sigma_{{ji}}}{,_j} = \frac{{\partial ({\sigma_{{ji}}})}}{{\partial {x_j}}} \) with summation convention.

  14. 14.

    This is also called as a weak form.

  15. 15.

    The body force \( {G_{{0i}}} \) per unit mass is explained at (2.36). The surface traction \( {P_{{0i}}} \) is such that \( {P_{{0i}}}{\hbox{d}}{S_0} = \frac{{\partial {x_j}}}{{\partial {X_m}}}{s_{{mi}}}{n_{{0i}}}{\hbox{d}}{S_0} \) for the boundary \( {\Gamma_{{0t}}} \) where \( {n_{{0i}}} \) is the surface unit normal to the undeformed configuration.

  16. 16.

    In non-index notation for coordinate system, we have only the nodal index for \( u \) and \( x \). Displacement function is \( u(x) = {a_0} + {a_1}x \), and (2.132) is \( \left( {\begin{array}{lll} 1 & {{x_1}} \\1 & {{x_2}} \\\end{array} } \right)\left( {\begin{array}{lll} {{a_0}} \\{{a_1}} \\\end{array} } \right) = \left( {\begin{array}{lll} {{u_1}} \\{{u_2}} \\\end{array} } \right) \). Thus \( \left( {\begin{array}{lll} {{a_0}} \\{{a_1}} \\\end{array} } \right) = \frac{1}{{x{}_2 - {x_1}}}\left( {\begin{array}{lll} {{x_2}} & { - {x_1}} \\{ - 1} & 1 \\\end{array} } \right)\left( {\begin{array}{lll} {{u_1}} \\{{u_2}} \\\end{array} } \right) \) and shape functions are \( \Phi_1^{{(e)}} = \frac{{{x_2} - x}}{{{x_2} - {x_1}}} \) and \( \Phi_2^{{(e)}} = \frac{{x - {x_1}}}{{{x_2} - {x_1}}} \). These gives us the finite element approximation \( u(x) = \frac{{{x_2} - x}}{{{x_2} - {x_1}}}{u_1} + \frac{{x - {x_1}}}{{{x_2} - {x_1}}}{u_2} \) or \( u(x) = \left( {\begin{array}{lll} {\frac{{{x_2} - x}}{{{x_2} - {x_1}}}} & {\frac{{x - {x_1}}}{{{x_2} - {x_1}}}} \\\end{array} } \right)\left( {\begin{array}{lll} {{u_1}} \\{{u_2}} \\\end{array} } \right). \)

  17. 17.

    We assume the existence of the inverse mapping \( {\xi_i} = {\xi_i}({x_j}) \).

  18. 18.

    Summention convention is not applied for equations with ( )# in its equation number.

  19. 19.

    Viscoelastic model of Kelvin-type is a parallel connection of a serial connection of a spring of constant \( {\mu_1} \) and a dashpot (damping component) of constant \( \eta \) and another spring of constant \( {\mu_2} \). The force-elongation relationship is written as \( F + {\tau_u}\dot{F} = {K_R}(u + {\tau_F}\dot{u}) \) where \( {K_R} = {\mu_2} \), \( {\tau_u} = {{\eta } \left/ {{{\mu_1}}} \right.} \) and \( {\tau_F} = ({{\eta } \left/ {{{\mu_2}}} \right.})[1 + {{{{\mu_2}}} \left/ {{{\mu_1}}} \right.}] \). The elongation \( c(t) \) for the force of a unit-step function \( 1(t) \) and the force \( k(t) \) for an elongation \( 1(t) \) are \( c(t) = {K_R}^{{ - 1}}[1 - (1 - {{{{\tau_u}}} \left/ {{{\tau_F}}} \right.})\exp ( - t/{\tau_F})]1(t) \) and \( k(t)=<$> <$>{K_R}[1 - (1 - {{{{\tau_F}}} \left/ {{{\tau_u}}} \right.})\exp( - t/{\tau_u})]1(t) \), respectively. These \( c(t) \) and \( k(t) \) are called the creep function and relaxation function.

  20. 20.

    Kelvin-type continua is an extension of Kelvin-type viscoelastic model of springs and dashpot. Force and elongation are replaced with stress and strain as \( \sigma + {\tau_{\varepsilon }}\dot{\sigma } = {E_R}(\varepsilon + {\tau_{\sigma }}\dot{\varepsilon }) \) where \( {E_R} = {\mu_2} \), \( {\tau_{\varepsilon }} = {{\eta } \left/ {{{\mu_1}}} \right.} \) and \( {\tau_{\sigma }} = ({{\eta } \left/ {{{\mu_2}}} \right.})[1 + {{{{\mu_2}}} \left/ {{{\mu_1}}} \right.}] \). This is the model of one-dimensional Kelvin-type continuum, and stress–strain relationship is given by \( \sigma (t) = \int_0^t {k(t - \tau )} \dot{\varepsilon }(\tau ){\hbox{d}}\tau \) or \( \varepsilon (t) = \int_0^t {c(t - \tau )} \dot{\sigma }(\tau ){\hbox{d}}\tau \). This model is extended to three dimensions in the similar manner in one-dimensional elasticity to three-dimensional one, establishing the Kelvin-type continuum (Kelvin solid, also known as standard linear solid). It is noted here, for the Kelvin solid, the constants \( {\mu_1} \) and \( {\mu_2} \) are elastic moduli with the unit of Pa and \( \eta \) is viscosity with the unit of \( {\hbox{Pa}} \cdot {\hbox{s}} \).

  21. 21.

    The original state of solid body in which no loads are applied is called the natural state or stress-free configuration. It is assumed zero stress and zero strain in the solid body. In the case of cornea, the in vivo state is a loaded state and the natural state will appear when the intraocular pressure is removed.

References

  • Adachi T, Tomita Y, Sakaue H, Tanaka M (1997) Simulation of trabecular surface remodeling based on local stress nonuniformity. JSME Int J Ser C 40(4):782–892

    Article  Google Scholar 

  • Adachi T, Tomiya Y, Tanaka M (1999) Three-dimensional lattice continuum model of cancellous bone for structural and remodeling simulation. JSME Int J Ser C 42(3):470–480

    Google Scholar 

  • Alastrue V, Calvo B, Pena E, Doblare M (2006) Biomechanical modeling of refractive corneal surgery. J Biomech Eng 128(1):150–160

    Article  Google Scholar 

  • Anderson K, El-Sheikh A, Newson T (2004) Application of structural analysis to the mechanical behaviour of the cornea. J R Soc Interface 1(1):1–13

    Article  Google Scholar 

  • Aoyama T, Azegami H, Kawakami N (2008) Nonlinear buckling analysis for etiological study of idiopathic scoliosis. J Biomech Sci Eng 3(3):399–410

    Article  Google Scholar 

  • Ashman RB, Cowin SC, van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17(5):349–361

    Article  Google Scholar 

  • Austman RL, Milner JS, Holdsworth DW, Dunning CE (2008) The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech 41(15):3171–3176

    Article  Google Scholar 

  • Azegami H (1994) Solution to domain optimization problems. Trans Jpn Soc Mech Eng Ser A 60:1479–1485

    Article  Google Scholar 

  • Azegami H, Murachi S, Kitoh J, Ishida Y, Kawakami N, Makino M (1998) Etiology of idiopathic scoliosis: computational study. Clin Orthop Relat Res 357:229–236

    Article  Google Scholar 

  • Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling-application: a preliminary remodeling simulation. J Orthop Res 8:662–670

    Article  Google Scholar 

  • Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2000) Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech 33:307–316

    Article  Google Scholar 

  • Bryton M, McDonnel P (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng 118(4):473–481

    Google Scholar 

  • Buskirk WCV, Cowin SC, Ward RN (1981) Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. Trans ASME J Biomech Eng 103:67–72

    Article  Google Scholar 

  • Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109

    Article  Google Scholar 

  • Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 196(4270):1174–1176

    Article  Google Scholar 

  • Carter DR, Hayes WC (1977) The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg 59A:954–962

    Google Scholar 

  • Chen J, Xu L (1994) A finite element analysis of the human temporomandibular joint. J Biomech Eng 116:401–407

    Article  Google Scholar 

  • Ciarelli MJ, Glodstein SA, Kuhn JL, Cody DD, Brown MB (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone form the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 9:674–682

    Article  Google Scholar 

  • Cilingir AC, Ucar V, Kazan R (2007) Three-dimensional anatomic finite element modeling of hemi arthroplasty of human hip joint. Trends Biomater Artif Organs 21(1):63–72

    Google Scholar 

  • Cowin SC (1983) The mechanical and stress adaptive properties of bone. Ann Biomed Eng 3(3–4):263–295

    Article  Google Scholar 

  • Cowin SC (1986) Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng 108:83–88

    Article  Google Scholar 

  • Cowin SC (ed) (1989) Bone mechanics. CRC Press, Boca Raton

    Google Scholar 

  • Cowin SC (ed) (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Dickson RA, Lawton JO, Archer IA, Butt WP (1984) The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66-B(1):8–15

    Google Scholar 

  • Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D (2008) Prediction of mechanical properties of cortical bone by quantitative computed tomography. Med Eng Phys 30(3):321–328

    Article  Google Scholar 

  • Elsheikh A, Anderson K (2005) Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2(3):177–185

    Article  Google Scholar 

  • Elsheikh A, Wang D (2007) Numerical modelling of corned biomechanical behaviour. Comp Meth Biomech Biomed Eng 10:85–95

    Google Scholar 

  • Elsheikh A, Wang D, Kotecha A, Brown M, Garway-Heath D (2006) Evaluation of Goldmann applanation tonometru using a nonlinear finite element ocular model. Ann Biomed Eng 34(10):1628–1640

    Article  Google Scholar 

  • Elsheikh A, Ross S, Alhasso D, Rama P (2009) Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 34(1):26–35

    Article  Google Scholar 

  • Flynn C, Taberner A, Nielsen P (2011) Modeling the mechanical response of in vivo human skin under a rich set of deformations. Ann Biomed Eng 39(7):1935–1946

    Article  Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol- Heart 237(5):H620–H631

    Google Scholar 

  • Gasser TC, Ogden RW, Halzapfel GA (2005) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–328

    Article  Google Scholar 

  • Goel VK, Park H, Kong W (1994) Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. J Biomech Eng 116(4):377–383

    Article  Google Scholar 

  • Guzmán FA, Castilla AA, Guarnieri FA and Rodríguez FR (2011) Intraocular pressure: Goldmann tonometry, computational model, and calibration equation. J Glaucoma [Epub ahead of print] doi: 10.1097/IJG.0b013e31822f4747

    Google Scholar 

  • Hanna K, Jouve F, Bercovier M, Waring G (1988) Computer simulation of lamellar keratectomy and myopic keratomeleusis. J Refract Surg 4(6):222–231

    Google Scholar 

  • Hanna K, Jouve F, Waring G, Ciarlet P (1989) Computer simulation of arcuate and radial incisions involving the corneo-scleral limbus. Eye 3:227–239

    Article  Google Scholar 

  • Hernandez CJ, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78

    Article  Google Scholar 

  • Hirose M, Tanaka E, Tanaka M, Fujita R, Kuroda Y, Yamano E, van Eijden TMGJ, Tanne K (2006) Three-dimensional finite-element model of human temporomandibular joint disc during prolonged clenching. Eur J Oral Sci 114(5):441–448

    Article  Google Scholar 

  • Hodgskinson R, Currey JD (1992) Young’s modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 3(5):377–381

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Weizacker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28:377–392

    Article  Google Scholar 

  • Holzapfel GA, Casser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material model. J Elasticity 61(1–3):1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJR (2003) The finite element method–linear static and dynamic finite element analysis. Dover, Mineola

    Google Scholar 

  • Kasuga K (1994) Study on scoliosis experimentally caused by binding posterior spinous processes in rats. J Jpn Orthop Assoc 68:798–807

    Google Scholar 

  • Kawabata H, Ono K, Seguchi Y, Tanaka M (1988) Idiopathic scoliosis and growth -a biomechanical consideration. J Jpn Orthop Assoc 62:167–170

    Google Scholar 

  • Knets I (2002) Peculiarities of the structure and mechanical properties of biological tissue. Meccanica 37(4–5):375–384

    Article  MATH  Google Scholar 

  • Knets I, Malmeisters A (1977) Deformability and strength of human compact bone tissue. In: Brankov G (ed) Mechanics of biological solids: Proceedings of Euromech Colloquium 68, Bulgarian Academy of Sciences, Sofia, pp 133–141

    Google Scholar 

  • Kwon J, Naito H, Matsumoto T, Tanaka M (2010a) Simulation model of trabecular bone remodeling considering effects of osteocyte apoptosis and targeted remodeling. J Biomech Sci Eng 5(5):539–551

    Article  Google Scholar 

  • Kwon J, Naito H, Matsumoto T, Tanaka M (2010b) Computational study on trabecular bone remodeling in human femur under reduced weight-bearing conditions. J Biomech Sci Eng 5(5):552–564

    Article  Google Scholar 

  • Lanir Y (1987) Skin mechanics In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, pp 11.11–11.25

    Google Scholar 

  • Laville A, Laporte S, Skalli W (2009) Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. J Biomech 42(10):1409–1415

    Article  Google Scholar 

  • Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement; quantitative analysis. J Cataract Refract Surg 31(1):146–155

    Article  Google Scholar 

  • Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14(1):107–114

    Article  Google Scholar 

  • Lotz JC, Gerhart TN, Hayes WC (1991) Mechanical properties of metaphyseal bone in the proximal femur. J Biomech 24(5):317–329

    Article  Google Scholar 

  • Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York

    Google Scholar 

  • Maurel N, Lavaste F, Skalli W (1997) A three-dimensional parameterized finite element model of the lower cervical spine, study of the influence of the posterior articular facets. J Biomech 30(9):921–931

    Article  Google Scholar 

  • Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships dependent on anatomic site. J Biomech 36:897–904

    Article  Google Scholar 

  • Mori H, Horiuchi S, Nishimura S, Nikawa H, Murayama T, Ueda K, Ogawa D, Kuroda S, Kawano F, Naito H, Tanaka M, Koolstra JH, Tanaka E (2010) Three-dimensional finite elemen analysis of cartilaginous tissues in human temporomandibular joint during prolonged clenching. Arch Oral Biol 55:879–886

    Article  Google Scholar 

  • Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27(11):1389–1394

    Article  Google Scholar 

  • Muller R, Puegsegger PR (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J Biomech 29(8):1053–1060

    Article  Google Scholar 

  • Oden JT (2000) Finite element of nonlinear continua. Dover, Mineola (originally published in 1972 by Mc-Grow Hill, New York)

    Google Scholar 

  • Oden JT, Reddy JN (1976) Variational methods in theoretical mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Pandolfi A, Holzapfel GA (2008) Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng 130(6):061006

    Article  Google Scholar 

  • Pérez del Palomar A, Doblaré M (2006) Finite element analysis of the temporomandibular joint during lateral excursions of the mandibule. J Biomech 39(12):2153–2163

    Article  Google Scholar 

  • Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405

    Article  Google Scholar 

  • Rho JY, Hobato MC, Ashman RB (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17(5):347–355

    Article  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA (1988) On the deoendence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168

    Article  Google Scholar 

  • Roy A, Dupps WJ Jr (2011) Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng 133(1):011002

    Article  Google Scholar 

  • Ruimerman R, Hillbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941

    Article  Google Scholar 

  • Shi L, Wang D, Driscoll M, Villemure I, Chu WC, Cheng JC, Aubin CE (2011) Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis 23(6):11

    Article  Google Scholar 

  • Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52:457–467

    Google Scholar 

  • Skedros JG, Brand RA (2011) Biographical sketch: Georg Hermann von Meyer (1815–1892). Clin Orthop Relat Res 469(11):3072–3076

    Article  Google Scholar 

  • Stokes IAF, Laible JP (1990) Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech 23(6):589–596

    Article  Google Scholar 

  • Studer H, Larrea X, Riedwyl H, Buchler P (2009) Biomechanical model of human cornea based on stromal microstructure. J Biomech 43(5):836–842

    Article  Google Scholar 

  • Taber LA (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Tadano S, Kanayama M, Ukai T, Kaneda K (1996) Morphological modeling and growth simulation of idiopathic scoliosis. In: Hayashi K, Ishikawa H (eds) Computational biomechanics. Springer, Tokyo, pp 67–88

    Chapter  Google Scholar 

  • Tanaka E, Tanne K, Sakuda M (1994) A three-dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Med Eng Phys 16:316–322

    Article  Google Scholar 

  • Tanaka E, Tanaka M, Miyawaki K, Tanne K (1999) Viscoelastic properties of canine temporomandibular joint disc in compressive load-relaxation. Arch Oral Biol 44:1021–1026

    Article  Google Scholar 

  • Tanaka E, del Pozo R, Sugiyama M, Tanne K (2002) Biomechanical response of retrodiscal tissue in the temporomandibular joint under compression. J Oral Maxillofac Surg 60:546–551

    Article  Google Scholar 

  • Tanaka M, Tanaka E, Tadoh M, Asai D, Kuroda Y (2003) Stress analysis of anterior-disc-displaced temporomandibular joint using individual finite element model. JSME Int J Ser C 46(4):1400–1408

    Article  Google Scholar 

  • Tanaka M, Matsumoto T, Naito H, Jinno T (2007) Shape optimization for corneal refractive surgery planning realizing structural profile by trimming operation. Seventh World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 21–25 May 2007, pp 625–630

    Google Scholar 

  • Tanaka E, Hirose M, Koolstra JH, van Eijden TMGJ, Fujita R, Tanaka M, Tanne K (2008) Modeling of the effect of friction in the temporomandibular joint on displacement of its disc during prolonged clenching. J Oral Maxillofac Surg 66(3):462–468

    Article  Google Scholar 

  • Tanaka M, Matsumoto T, Naito H, Tanaka H (2009) Identification method of subject specific corneal material constants and intraocular pressure. IV International Congress on Computational Bioengineering, p 109

    Google Scholar 

  • Todoh M, Tanaka M, Ebara S (2001a) Idiopathic scoliosis analysis by finite element model of spine: influence of spinal ligament constraint. Jpn J Clin Biomech 22:233–236

    Google Scholar 

  • Todoh M, Tanaka M, Ebara S (2001b) Analysis of idiopathic scoliosis by finite element method with unbalanced growth: study on human spine model with spinal ligaments. Spinal Deformity J Jpn Scoliosis Soc 16:5–8

    Google Scholar 

  • Tong P, Fung YC (1976) The stress–strain relationship for the skin. J Biomech 9(10):649–657

    Article  Google Scholar 

  • Tsubota K, Suzuki T, Yamada T, Hojo M, Makinouchi M, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolfff’s law. J Biomech 42:1088–1094

    Article  Google Scholar 

  • Turner CH (1992) On Wolff’s law of trabecular architecture. J Biomech 25(1):1–9

    Article  Google Scholar 

  • Turner CH, Cowin SC (1987) Dependence of elastic constants of an anisotropic porous material upon porosity and fabric. J Mater Sci 22:3178–3184

    Article  Google Scholar 

  • Turner CH, Rho J, Kanano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement technique. J Biomech 32(4):437–441

    Article  Google Scholar 

  • Vaishnav RH, Young JT, Patel DJ (1973) Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32:577–583

    Article  Google Scholar 

  • van Rietbergen B, Majumdar S, Pistoia W, Newitt DC, Kothari M, Laib A, Ruegsegger PR (1998) Assessment of cancellous bone mechanical properties form micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care 6(5–6):4132–4420

    Google Scholar 

  • Velten K, Gunther M, Oberacher-Velten I, Lorenz B (2006) Finite-element simulation of corneal applanation. J Cataract Refract Surg 32(7):1073–1074

    Article  Google Scholar 

  • Villemure I, Aubin CE, Dansereau J, Labelle H (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng 124(6):784–790

    Article  Google Scholar 

  • Villemure I, Aubin CE, Dansereau J, Labelle H (2004) Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13:83–90

    Article  Google Scholar 

  • Vito RP, Carnell PH (1992) Finite element based mechanical models of the cornea for pressure and indenter loading. Refract Corneal Surg 8(2):146–151

    Google Scholar 

  • von Meyer GH (1856) Lehrbuch der physiologischen anatomie des menschen. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • von Meyer GH (1867) Die architectur der spongiosa. Reichert und Du Bois-Reymond’s Archiv 8:615–628

    Google Scholar 

  • von Meyer GH (2011) The classic: the architecture of the trabecular bone (Tenth contribution on the mechanics of the human skeletal framework), (Die Architectur der Spongiosa) trans: Brand RA. Clin Orthop Relat Res 469(11):3079–3084

    Article  Google Scholar 

  • Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol 291:H1200–H1209

    Article  Google Scholar 

  • Washizu K (1982) Variational method for elasticity and plasticity, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1–2):107–128

    Article  MATH  Google Scholar 

  • Wolff J (1892) Das gesetz der transformation der knochen. Verlag von August Hirschwald, Berlin

    Google Scholar 

  • Wolff J (1986) The law of bone remodelling (trans: Marquet P, Furlong R). Springer, Berlin

    Google Scholar 

  • Wolff J (2010) The classic: on the inner architecture of bones and its importance for bone growth 1870. Clin Orthop Relat Res 468:1056–1065

    Article  Google Scholar 

  • Yang G, Kabel J, van Rietbergen B, Odgaard A, Huiskes R, Cowin SC (1999) The anisotropic Hooke’s law for cancellous bone and wood. J Elast 53(2):125–146

    Article  MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  • Zysset PK, Guo XE, Hoffer CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Tanaka, M., Wada, S., Nakamura, M. (2012). Mechanics of Biosolids and Computational Analysis. In: Computational Biomechanics. A First Course in “In Silico Medicine”, vol 3. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54073-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54073-1_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54072-4

  • Online ISBN: 978-4-431-54073-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics