Skip to main content

Advanced Materials Design via Low-Damage Plasma Processes

  • Chapter
  • First Online:
Progress in Advanced Structural and Functional Materials Design
  • 1287 Accesses

Abstract

Low-damage plasma processing of materials is strongly desired for development of a variety of advanced devices with inorganic/organic hybrid materials structure (formation of inorganic functional layers on soft-materials substrate and/or stack layer formation with inorganic functional layers and organic functional layers), especially for development of flexible electronics, flat-panel displays, thin-film photovoltaic cells, biomaterials and microelectronics. For successful development of the organic/inorganic hybrid devices, low-temperature formation of high-quality inorganic functional layers (inorganic semiconductors and/or transparent conductive oxides) on soft materials and ultra-fine control of interface structure are required to avoid considerable degradation of soft materials. In this chapter, low-damage plasma processes have been described on the basis of plasma production with low-inductance antenna (LIA) modules to sustain radio-frequency inductively coupled discharges, which can provide one of the solutions to realize high-density and low-damage plasma production and active control of power deposition profiles over large area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conrads H, Schmidt M (2000) Plasma Sources Sci Technol 9:441

    Article  CAS  Google Scholar 

  2. Czerwiec T, Renevier N, Michel H (2000) Surf Coatings Technol 131:267

    Article  Google Scholar 

  3. Mayrhofer PH, Mitterer C, Hultman L, Clemens H (2006) Prog Mater Sci 51:1032

    Article  CAS  Google Scholar 

  4. Robertson J (1992) Surf Coatings Technol 50:185

    Article  CAS  Google Scholar 

  5. Bhushan B (1999) Diamond Relat Mater 8:1985

    Article  CAS  Google Scholar 

  6. Kuo Y (1995) J Electrochem Soc 142:2486

    Article  CAS  Google Scholar 

  7. Goetzbergera A, Heblinga C, Schock H-W (2003) Mat Sci Eng R 40:1

    Article  Google Scholar 

  8. Chua PK, Chena JY, Wanga LP, Huang N (2002) Mat Sci Eng R 36:143

    Article  Google Scholar 

  9. Mogab CJ, Adams AC, Flamm DL (1978) J Appl Phys 49:3796

    Article  CAS  Google Scholar 

  10. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  11. Choi M-C, Kim Y, Ha C-S (2008) Prog Polym Sci 33:581

    Article  CAS  Google Scholar 

  12. International Technology Roadmap for Semiconductors, 2007 edition, Executive Summary

    Google Scholar 

  13. Gancarz I, Pozniak G, Bryjak M (1999) Eur Polym J 35:1419

    Article  CAS  Google Scholar 

  14. Setsuhara Y, Cho K, Shiratani M, Sekine M, Hori M, Ikenaga E, Zaima S (2010) Thin Solid Films 518:3555

    Article  CAS  Google Scholar 

  15. Steckenreiter T, Balanzat E, Fuess H, Trautmann C (1997) Nucl Instrum Methods Phys Res B 131:159

    Article  CAS  Google Scholar 

  16. Day M, Willes DM (1972) J Appl Polymer Sci 16:203

    Article  CAS  Google Scholar 

  17. Masseya S, Cloutierb P, Sancheb L, Roy D (2008) Rad Phys Chem 77:889

    Article  Google Scholar 

  18. Stoliarov SI, Westmoreland PR, Nyden MR, Forney GP (2003) Polym 44:883

    Article  CAS  Google Scholar 

  19. Setsuhara Y, Cho K, Takenaka K, Shiratani M, Sekine M, Hori M (2011) Thin Solid Films 519:6721

    Article  CAS  Google Scholar 

  20. Setsuhara Y, Shoji T, Ebe A, Baba S, Yamamoto N, Takahashi K, Ono K, Miyake S (2003) Surf CoatTechnol 174–175:33

    Article  Google Scholar 

  21. Takenaka K, Setsuhara Y, Nishisaka K, Ebe A (2006) Jpn J Appl Phys 45:8046

    Article  CAS  Google Scholar 

  22. Tsuda O, Ishihara M, Koga Y, Fujiwara S, Setsuhara Y, Sato N (2005) J Phys Chem B 109:4917

    Article  CAS  Google Scholar 

  23. Deguchi H, Yoneda H, Kato K, Kubota K, Hayashi T, Ogata K, Ebe A, Takenaka K, Setsuhara Y (2006) Jpn J Appl Phys 45:8042

    Article  CAS  Google Scholar 

  24. Setsuhara Y, Takenaka K, Ebe A, Nishisaka K (2007) Solid State Phenomena 127:239

    Article  CAS  Google Scholar 

  25. Setsuhara Y, Takenaka K, Ebe A, Nishisaka K (2007) Plasma Process Polym 4:S628

    Article  Google Scholar 

  26. Setsuhara Y, Takenaka K, Ebe A, Han JG (2008) Surf CoatTechnol 202:5230

    Article  CAS  Google Scholar 

  27. Takenaka K, Setsuhara Y, Nishisaka K, Ebe A (2008) Jpn J Appl Phys 47:6900

    Article  CAS  Google Scholar 

  28. Takahashi E, Nishigami Y, Tomyo A, Fujiwara M, Kaki H, Kubota K, Hayashi T, Ogata K, Ebe A, Setsuhara Y (2007) Jpn J Appl Phys 46:1280

    Article  CAS  Google Scholar 

  29. Setsuhara Y, Cho K, Shiratani M, Sekine M, Hori M (2010) Thin Solid Films 518:6492

    Article  CAS  Google Scholar 

  30. Hopwood J (1992) Plasma Sources Sci Technol 1:109

    Article  CAS  Google Scholar 

  31. Setsuhara Y, Kamai M, Miyake S, Musil J (1997) Jpn J Appl Phys 36:4568

    Article  CAS  Google Scholar 

  32. Yamashita M, Setsuhara Y, Miyake S, Kumagai M, Shoji T, Musil J (1999) Jpn J Appl Phys 38:4291

    Article  CAS  Google Scholar 

  33. Miyayama T, Sanada N, Iida S-I, Hammondb JS, Suzuki M (2008) Appl Surf Sci 255:951

    Article  CAS  Google Scholar 

  34. Cui N-Y, Upadhyay DJ, Anderson CA, Meenan BJ, Brown NMD (2007) Appl Surf Sci 253:3865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partly by The Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Setsuhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Setsuhara, Y. (2013). Advanced Materials Design via Low-Damage Plasma Processes. In: Kakeshita, T. (eds) Progress in Advanced Structural and Functional Materials Design. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54064-9_18

Download citation

Publish with us

Policies and ethics