Skip to main content

Advanced Materials Design by Irradiation of High Energy Particles

  • Chapter
  • First Online:
Progress in Advanced Structural and Functional Materials Design

Abstract

The MeV electron irradiation by high-voltage electron microscopy (HVEM) can introduce the simplest type of irradiation defects in materials, and sometimes leads to a phase transition with negligible temperature change and contamination. This technique makes it possible to continuously observe the phase transition process using electron microscopy simultaneously as defects are introduced. Therefore, HVEM can provide a unique opportunity to carry out in-depth studies on the phase transition introduced by the accumulation of defects under a significantly simplified condition. In this paper, the following phase transitions related to non-equilibrium phases under MeV electron irradiation are discussed: (1) solid state amorphization (SSA) in metallic compounds, (2) crystallization of metallic glasses, and (3) crystal-to-amorphous-to-crystal (C–A–C) transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen MH, Turnbull D (1959) J Chem Phys 31:1164–1169

    Article  CAS  Google Scholar 

  2. Cohen MH, Grest GS (1979) Phys Rev B 20:1077–1098

    Article  CAS  Google Scholar 

  3. Egami T, Maeda K, Vitek V (1980) Philos Mag A 41:88–901

    Article  Google Scholar 

  4. Egami T, Srolovitz D (1982) J Phys F Met Phys 12:2141–2164

    Article  CAS  Google Scholar 

  5. Srolovitz D, Egami T, Vitek V (1982) Phys Rev B 24:6936–6944

    Article  Google Scholar 

  6. Egami T, Maed K, Srolovitz D, Vitek V (1980) J Phys 41(C8):272–275

    Google Scholar 

  7. Egami T, Poon SJ, Zhang Z, Keppens V (2007) Phys Rev B 76:024203_1-024203_6

    Article  Google Scholar 

  8. Fujita H (1989) J Electron Microsc Tech 3:243–304

    Article  Google Scholar 

  9. Fujita H (1989) J Electron Microsc Tech 12:201–218

    Article  CAS  Google Scholar 

  10. Seeger A (1999) J Electron Microsc 48:301–305

    Article  CAS  Google Scholar 

  11. Mori H (2001) J Electron Microsc 60:S189–S197

    Google Scholar 

  12. Yasuda H (2011) Kenbikyo 46:160–164 (in Japanese)

    CAS  Google Scholar 

  13. Petrusenko Y, Bakai A, Borysenko V, Astakhov A, Barankov D (2009) Intermetallics 17:246–248

    Article  CAS  Google Scholar 

  14. Nagase T, Hosokawa T, Umakoshi Y (2010) Intermetallics 18:767–772

    Article  CAS  Google Scholar 

  15. Nagase T, Umakoshi Y (2010) Intermetallics 18:1803–1808

    Article  CAS  Google Scholar 

  16. Ranganathan S (2003) Curr Sci 85:1404–1406

    Google Scholar 

  17. Cantor B, Chang ITH, Night PK, Vincent AJ (2004) Mater Sci Eng A 375:213–218

    Article  Google Scholar 

  18. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Adv Eng Mater 6:299–303

    Article  CAS  Google Scholar 

  19. Nagase T, Sanda T, Nino A, Qin W, Yasuda H, Mori H, Umakoshi Y, Szpunar JA (2012) J Non-Cryst Solids 358:502–518

    Article  CAS  Google Scholar 

  20. Urban K (1979) Phys Status Solidi A 56:157–168

    Article  CAS  Google Scholar 

  21. Urban K (1980) Electron Microsc 4:188–195

    CAS  Google Scholar 

  22. Fujita H (1989) Hiheikou-zairyo no Riron to Gijyutsu-Seminar Text of Japan Inst Metals. JIM, Sendai 73–82 (in Japanese)

    Google Scholar 

  23. Seitz F, Koehler JS (1956) In: Seitz F, Tumbull D (eds) Solid state physics, vol 2. Academic, New York

    Google Scholar 

  24. Corbett JW (1966) Electron radiation damage in semiconductors and metals. Academic, New York

    Google Scholar 

  25. Oen OS (1988) Nucl Instrum Methods Phys Res B 33:744–747

    Article  Google Scholar 

  26. Carpenter GJC, Schulson EM (1981) Scr Metall 15:549–554

    Article  CAS  Google Scholar 

  27. Carpenter GJC, Schulson EM (1978) J Nucl Mater 73:180–189

    Article  CAS  Google Scholar 

  28. Yasuda H, Mori H (1999) J Electron Microsc 48:581–584

    Article  CAS  Google Scholar 

  29. Mori H, Fujita H (1982) Jpn J Appl Phys 21:L494–L496

    Article  CAS  Google Scholar 

  30. Thomas G, Mori H, Fujita H, Sinclair R (1982) Scr Metall 16:589–592

    Article  CAS  Google Scholar 

  31. Mogro-Campero A, Hall EL, Walter JL, Ratkowski AJ (1982) In: Picraux ST, Choyke WJ (eds) Metastable materials formation by ion-implantation. North-Holland, New York, pp 203–208

    Google Scholar 

  32. Mori H, Fujita H (1991) Ultramicroscopy 39:355–360

    Article  CAS  Google Scholar 

  33. Nagase T, Sasaki A, Yasuda HY, Mori H, Terai T, Kakeshita T (2011) Intermetallics 19:1313–1318

    Article  CAS  Google Scholar 

  34. Nagase T, Takizawa K, Wakeda M, Shibutani Y, Umakoshi Y (2010) Intermetallics 18:441–450

    Article  CAS  Google Scholar 

  35. Suryanarayana C (2001) Prog Mater Sci 46:1–84

    Article  CAS  Google Scholar 

  36. Mizutani U, Hoshino Y, Yamada H (1986) Amorphous-Gokin Sakusei no Tebiki. Agne, Tokyo (in Japanese)

    Google Scholar 

  37. Mori H (1993) In: Sakurai Y, Hamakawa Y, Masumoto T, Shirae K, Suzuki K (eds) Current topics in amorphous materials, physics and technology. Elsevier Science, Amsterdam, pp 120–126

    Google Scholar 

  38. Sakata T, Mori H, Fujita H (1989) J Chem Soc Jpn Int 97:1382–1388

    Google Scholar 

  39. Mori H, Fujita H (1992) In: Yavari AR (ed) Electron irradiation induced crystal-to-amorphous transition in metallic and non-metallic compounds in ordering and disordering in alloys. Applied Science, London, pp 277–286

    Google Scholar 

  40. Inui H, Mori H, Fujita H (1989) Acta Mater 37:1337–1342

    Article  CAS  Google Scholar 

  41. Okamoto PR, Lam NQ, Rehn LE (1999) Physics of crystal-to-glass transformations. In: Ehrenreich H, Spaepen F (eds) Solid state physics, vol 52. Academic, San Diego

    Google Scholar 

  42. Takeuchi A, Inoue A (2000) Mater Trans 41:1372–1378

    CAS  Google Scholar 

  43. Takeuchi A, Inoue A (2005) Mater Trans 46:2817–2829

    Article  CAS  Google Scholar 

  44. Nagase T, Hosokawa T, Takizawa K, Umakoshi Y (2009) Intermetallics 17:657–668

    Article  CAS  Google Scholar 

  45. Nagase T, Umakoshi Y (2003) Scr Mater 48:1237–1242

    Article  CAS  Google Scholar 

  46. Nagase T, Umakoshi Y, Sumida N (2002) Mater Sci Eng A 323:218–225

    Article  Google Scholar 

  47. Nagase T, Nino A, Hosokawa T, Umakoshi Y (2007) Mater Trans 48:1651–1658

    Article  CAS  Google Scholar 

  48. Anada S, Nagase T, Yasuda H, Mori H (to be submitted)

    Google Scholar 

  49. Imafuku M, Sato S, Koshiba H, Matsubara E, Inoue A (2000) Mater Trans JIM 41:1526–1529

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Priority Assistance for the Formation of Worldwide Renowned Centers of Research—The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) of the Ministry of Education, Culture, Sports, Science and Technology, Japan. The author greatly thanks Prof. H. Mori and Prof. Y. Umakoshi in Osaka University for the fruitful discussions, valuable suggestions, and comments. Many experimental results about irradiation-induced amorphization and crystallization were obtained by Dr. A. Nino in Akita University, Dr. W. Qin in University of Saskatchewan, T. Hosokawa, A. Sasaki and T. Sanda. The recent experimental results about the irradiation-induced C–A–C transition were obtained by S. Anada in Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nagase .

Editor information

Editors and Affiliations

Appendix: Technical Terms

Appendix: Technical Terms

  1. (1)

    Anti-free volume-like defect [6, 1315]

    • In an amorphous phase, not only vacancy-type defects but also interstitial-type defects can be considered, as shown in Fig. 12.1a. Anti-free volume-like defects correspond to interstitial-type defects. Petrusenko et al. reported MeV electron irradiation damage and suggested the existence of vacancy-type defects and interstitial-type defects in metallic glasses based on the experimental results. The recovery of introduced defects in metallic glasses has two threshold temperatures because of the changes in the relaxation mechanism under 298 K: the first was related to with complexes containing interstitial-type defects in metallic glass, while the second was a result of the relaxation of vacancy-containing complexes [14].

  2. (2)

    High-entropy materials (HE materials) [1618]

    • This class of alloys consists of multi-component materials with an approximately equiatomic ratio of components. Thus, these alloys have a high entropy of mixing, which distinguishes them from conventional alloys. Solid solutions with multi-principal elements have generally been found to be more stable than intermetallic compounds at elevated temperatures because of their large entropies of mixing. Some researchers have defined a high-entropy material as one that has at least five principal elements, each of which has an atomic concentration between 5 % and 35 %; for example, the Fe20Ni20Cu20Co20Cr20 alloy.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nagase, T. (2013). Advanced Materials Design by Irradiation of High Energy Particles. In: Kakeshita, T. (eds) Progress in Advanced Structural and Functional Materials Design. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54064-9_12

Download citation

Publish with us

Policies and ethics