Self-Organization of Motion

  • Satoshi Murata
  • Haruhisa Kurokawa
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 77)


In contrast with lattice-type modular robots capable of self-reconfiguration, chain-type modular robots are made for flexible motions, exploiting their multiple degrees of freedom. Motion control is one of the major areas of robotics, and knowledge accumulated through years of experience is applicable to chain type modular robots. Most of such knowledge and methods, however, are suited to a centralized controller based on a complete and precise model. In this chapter, we explore a way to design distributed motion control for modular robots. We start with building a homogeneous distributed control system applicable to any robot configuration. The system then is optimized accordingly to each specific robot configuration.


Joint Angle Motion Control Rolling Motion Zero Moment Point Quadruped Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Craig, J.J.: Introduction to robotics: mechanics and control, 2nd edn. Addison-Wesley (1989)Google Scholar
  2. 2.
    Todd, D.J.: Walking machines: an introduction to legged robots. Kogan Page (1985)Google Scholar
  3. 3.
    Sastra, J., Chitta, S., Yim, M.: Dynamic Rolling for a Modular Loop Robot. In: Adv. Robot., vol. 39, pp. 421–430. Springer (2008)Google Scholar
  4. 4.
    Hirose, S., Morishima, A.: Design and Control of a Mobile Robot with an Articulated Body. Int. J. Robot. Res. 9(2), 99–114 (1990)CrossRefGoogle Scholar
  5. 5.
    Kimura, S., Tsuchiya, S., Suzuki, Y.: Decentralized Autonomous Mechanism for Fault-Tolerant Control of a Kinematically Redundant Manipulator. In: IEEE Int. Conf. Syst. Man. Cybern., vol. 3, pp. 2540–2545 (1995)Google Scholar
  6. 6.
    Winfree, A.T.: Biological Rhythms and the Behavior of Populations of Coupled Oscillators. J. Theoret. Biol. 16, 15–42 (1967)CrossRefGoogle Scholar
  7. 7.
    Strogatz, S.H., Stewart, I.: Coupled Oscillators and Biological Synchronazation. Sci. Am., 102–109 (December 1993)Google Scholar
  8. 8.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University (2001)Google Scholar
  9. 9.
    Kokaji, S., Murata, S., Kurokawa, H., Tomita, K.: Clock synchronization mechanisms for a distributed autonomous system. J. Robot. Mechatron 8(5), 427–434 (1996)Google Scholar
  10. 10.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)MATHCrossRefGoogle Scholar
  11. 11.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer (1983)Google Scholar
  12. 12.
    Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. John Wiley & Sons (1986)Google Scholar
  13. 13.
    Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: A Modular Robot That Exploits Emergent Phenomena. In: Proc. Int. Conf. Robot. Autom., pp. 2982–2987 (2005)Google Scholar
  14. 14.
    Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol. 13, 345–369 (1982)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Yuasa, H., Ito, M.: Coordination of many oscillators and generation of locomotory patterns. Biol. Cybern. 63, 177–184 (1990)MATHCrossRefGoogle Scholar
  16. 16.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  17. 17.
    Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain based on Biological Concepts. Int. J. Robot. Res. 22(3-4), 187–202 (2003)CrossRefGoogle Scholar
  18. 18.
    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biolog. Cybern. 56, 345–353 (1987)CrossRefGoogle Scholar
  19. 19.
    Marbach, D., Ijspeert, A.: Online Optimization of Modular Robot Locomotion. In: Proc. IEEE Int. Conf. Mechtron Automat., pp. 248–253 (2005)Google Scholar
  20. 20.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT (1992)Google Scholar
  21. 21.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)Google Scholar
  22. 22.
    Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic Locomotion Design and Experiments for a Modular Robotic System. IEEE/ASME Trans. Mechatron 10(3), 314–325 (2005)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Hoyt, D.F., Taylor, C.R.: Gait and the energetics of locomotion in horses. Nat. 292(16), 239–240 (1981)CrossRefGoogle Scholar
  25. 25.
    Sims, K.: Evolving Virtual Creatures. In: Proc. SIGGRAPH, pp. 15–22 (1994)Google Scholar
  26. 26.
    Marbach, D., Ijspeert, A.J.: Co-Evolution of Configuration and Control for Homogenous Modular Robots. Intel. Auton. Syst. 8, 712–719 (2004)Google Scholar

Copyright information

© Haruhisa Kurokawa, Satoshi Murata 2012

Authors and Affiliations

  1. 1.Department of Bioengineering and Robotic Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Intelligent Systems Institute Field Robotics Research GroupNational Institute of Advanced Science and Technology (AIST)TsukubaJapan

Personalised recommendations