Robotic Metamorphosis

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 77)


M-TRAN is a three dimensional modular robotic system, havingfeatures of lattice-type and chain-type systems; it can self-reconfigure as a lattice-type modular robot, and can make versatile robotic motions as a chain-type modular robot. In this chapter, we discuss its lattice-type features: design principles, metamorphosis by small numbers of modules, and distributed self-reconfiguration by large numbers of modules. Throughout this section, the term “metamorphosis” is used interchangeably with the term “self-reconfiguration”.


Cellular Automaton Joint Angle Regular Structure Walking Robot Modular Robot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: Self-Reconfigurable Modular Robotic System. IEEE/ASME Trans. Mechatron 7(4), 431–441 (2002)CrossRefGoogle Scholar
  2. 2.
    Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed Self-reconfiguration of M-TRAN III Modular Robotic System. Intl. J. Robot. Res. 27(3-4), 373–386 (2008)CrossRefGoogle Scholar
  3. 3.
    Kurokawa, H., et al.: A Three-Dimensional Self-Reconfigurable System. Adv. Robot. 13(6), 591–602 (2000)MathSciNetGoogle Scholar
  4. 4.
    Chen, I.M., Burdick, J.: Enumerating the non-isomorphic assembly configurations of a modular robotic system. Int. J. Robot. Res. 17(7), 702–719 (1996)CrossRefGoogle Scholar
  5. 5.
    Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic Configuration Recognition Methods in Modular Robots. Int. J. Robot. Res. 27(3-4), 403–421 (2008)CrossRefGoogle Scholar
  6. 6.
    Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.: Graph signature for self-reconfiguration planning. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 863–869 (2008)Google Scholar
  7. 7.
    Hou, F., Shen, W.M.: On the Complexity of Optimal Reconfiguration Planning for Modular Reconfigurable Robots. In: Proc. IEEE Int. Conf. Robot. Autom. (2010)Google Scholar
  8. 8.
    Pamecha, A., Uphoff, I.E., Chirikjian, G.S.: Useful metrics for modular robot motion planning. IEEE Trans. Robot. Automat. 13, 531–545 (1997)CrossRefGoogle Scholar
  9. 9.
    Chirikjian, G.S., Pamecha, A., Uphoff, I.E.: Evaluating efficiency of self-reconfiguration in a class of modular robots. J. Robot. Sys. 13(5), 317–338 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Kotay, K.D., Rus, D.L.: Scalable parallel algorithm for configuration planning for self-reconfiguring robots. In: Proc. SPIE (Sens Fusion Decentralized Control Robot. Sys. III), vol. 4196, pp. 377–387 (2000)Google Scholar
  11. 11.
    Nguyen, T., Guibas, L., Yim, M.: Controlled module density, helps reconfiguration planning. In: Proc. Int. Workshop Algorithmic Found Robot., pp. 15–27 (2000)Google Scholar
  12. 12.
    Butler, Z., Byrnes, S., Rus, D.: Distributed motion planning for modular robots with unit-compressible modules. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Sys (IROS), vol. 2, pp. 790–796 (2001)Google Scholar
  13. 13.
    Stoy, K., Nagpal, R.: Self-repair through scale independent selfreconfiguration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst (IROS), pp. 2062–2067 (2004)Google Scholar
  14. 14.
    Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments. Int. J. Robot. Res. 21(10), 903–916 (2002)CrossRefGoogle Scholar
  15. 15.
    Ostergaard, E.H., Tomita, K., Kurokawa, H.: Distributed Metamorphosis of Regular M-TRAN Structures. Distrib. Auton. Robot. Syst. (DARS) 6, 169–178 (2007)CrossRefGoogle Scholar
  16. 16.
    Kurokawa, H., Tomita, K., Kamimura, A., Murata, S.: Toward Flexible and Scalable Self-reconfiguration of M-TRAN. In: Distrib. Auton. Robot. Syst. (DARS), pp. 405–416. Springer, Berlin (2008)Google Scholar
  17. 17.
    Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic Decentralized Control for Lattice-Based Self-Reconfigurable Robots. Int. J. Robot. Res. 23(9), 919–937 (2004)CrossRefGoogle Scholar
  18. 18.
    Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54(2), 135–141 (2006)CrossRefGoogle Scholar
  19. 19.
    Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Robot. Auton. Syst. 54(8), 641–650 (2006)CrossRefGoogle Scholar
  20. 20.
    Inou, N., Fukushima, S., Shimotai, N., Ujihashi, S.: Study of Group Robots Adaptively Forming a Mechanical Structure - Effect of Mechanical Properties of Cellular Robots on Structure Formation. JSME Int. J. C43(1), 127–133 (2000)Google Scholar
  21. 21.
    Kurokawa, H., Yoshida, E., Kamimura, A., Tomita, K., Murata, S., Kokaji, S.: Self-reconfigurable M-TRAN Structures and Their Walker Generation. Robot. Auton. Syst. 54(2), 142–149 (2006)CrossRefGoogle Scholar
  22. 22.
    Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system – Navigation, docking, and integration of M-TRAN. IEEE Robot. Automat. Magazine 14(4), 56–63 (2007)CrossRefGoogle Scholar
  23. 23.
    Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards Robotic Self-reassembly After Explosion. In: Proc. IEEE/RSJ Int. Conf. Intell., pp. 2767–2772 (2007)Google Scholar
  24. 24.
    Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and Designed Self-Reproducing Modular Robotics. IEEE Trans. Robot. 23(2), 308–319 (2007)CrossRefGoogle Scholar

Copyright information

© Haruhisa Kurokawa, Satoshi Murata 2012

Authors and Affiliations

  1. 1.Department of Bioengineering and Robotic Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Intelligent Systems Institute Field Robotics Research GroupNational Institute of Advanced Science and Technology (AIST)TsukubaJapan

Personalised recommendations