Prototypes of Self-Organizing Robots

  • Satoshi Murata
  • Haruhisa Kurokawa
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 77)


In Chapter 3, we introduced a line of research initiated by von Neumann and Penrose around 1960. The ultimate goal of their work was artificial self-reproducing systems. In Chapter 5, we explained our mechanical unit called Fractum, whose goal was self-assembly and self-repair. In fact, the Fractum module was one of the first systems proposed by various researchers after microprocessors became commercially available. In this chapter, in order to help the reader get an overall picture of the research on so-called modular robots, we make a classification of modular robots, identify typical problems in their design, and then give an overview of some representative systems that have been developed.


Shape Memory Alloy Modular Robot Shape Memory Alloy Actuator Reconfigurable Robot Shape Memory Alloy Spring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukuda, T., Nakagawa, S.: A Study on Dynamically Reconfigurable Robotic Systems. Trans. Japan. Soc. Mech. Eng. C 55(509), 114–118 (1989) (in Japanese)CrossRefGoogle Scholar
  2. 2.
    Kokaji, S.: A Mechanism of Very Many Degrees of Freedom and a Distributed Control System. J. of Japan Soc. Precis. Eng. 54(10), 1921–1926 (1988) (in Japanese)CrossRefGoogle Scholar
  3. 3.
    Hamlin, G., Sanderson, A.: TETROBOT A Modular Approach to Reconfigurable Parallel Robotics. Springer (1997)Google Scholar
  4. 4.
    Chirikjian, G.S.: Kinematics of a Metamorphic Robotic System. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 1, pp. 449–455 (1994)Google Scholar
  5. 5.
    Pamecha, A., et al.: Design and Implementation of Metamorphic robot. In: Proc. ASME Des. Eng. Tech. Conf., pp. 18–22 (1995)Google Scholar
  6. 6.
    Rus, R., Vona, M.: Self-reconfiguration Planning with Compressible Unit Modules. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 4, pp. 2513–2520 (1999)Google Scholar
  7. 7.
    Butler, Z., Rus, D.: Distributed Planning and Control for Modular Robots with Unit-Compressible Modules. Int. J. Robot. Res. 22(9), 699–715 (2003)CrossRefGoogle Scholar
  8. 8.
    Yoshida, E., et al.: Miniaturization of Self-Reconfigurable Robotics System using Shape Memory Alloy Actuator. J. Robot. Mechatron 12(2), 96–102 (2000)Google Scholar
  9. 9.
    Yoshida, E., et al.: Micro Self-Reconfigurable Modular Robot Using Shape Memory Alloy. J. Robot. Mechatron 13(2), 212–219 (2001)Google Scholar
  10. 10.
    Yoshida, E., et al.: Miniaturization of Self-Reconfigurable Robotic System using Shape Memory Alloy Actuator. J. Robot. Mechatron 12(2), 96–102 (2000)Google Scholar
  11. 11.
    Suzuki, Y., et al.: Reconfigurable Modular Robot Adaptively Transforming a Mechanical Structure. J. Robot. Soc. Japan 26(1), 74–81 (2008)Google Scholar
  12. 12.
    Kurokawa, H., et al.: A Three-Dimensional Self-Reconfigurable System. Adv. Robot. 13(6), 591–602 (2000)MathSciNetGoogle Scholar
  13. 13.
    Yoshida, E., et al.: Self-Assembly and Self-Repair of 3-D Structure by an Autonomous Distributed Machine. Trans. Soc. Instrum. Control Eng. 35(11), 1421–1430 (1999) (in Japanese)Google Scholar
  14. 14.
    Kotay, K., et al.: The self-reconfiguring robotic molecule. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 1, pp. 424–431 (1998)Google Scholar
  15. 15.
    Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: modules for a self-reconfigurable robot. In: Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS 2004), vol. 2, pp. 2068–2073 (2004)Google Scholar
  16. 16.
    Østergaard, E.H., et al.: Design of the ATRON lattice-based self-reconfigurable robot. Auton. Robot. 21(2), 165–183 (2006)CrossRefGoogle Scholar
  17. 17.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nat. 435, 163–164 (2005)CrossRefGoogle Scholar
  18. 18.
    Yim, M.: Locomotion with a Unit Modular Reconfigurable Robot., Ph.D. Thesis, Dept. Mech. Eng. Stanford Univ. (1994)Google Scholar
  19. 19.
    Yim, M., et al.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron 7(4), 442–451 (2002)CrossRefGoogle Scholar
  20. 20.
    Castano, A., Behar, A., Will, P.M.: The Conro Modules for Reconfigurable Robots. IEEE/ASME Trans. Mechatron 7(4), 403–409 (2002)CrossRefGoogle Scholar
  21. 21.
    Kirby, B.T., et al.: Modular Robots Using Magnetic Force Effectors. In: Proc. IEEE Int. Conf. Intel. Robot. Syst (IROS), pp. 2787–2793 (2007)Google Scholar
  22. 22.
    Shimizu, M., Ishiguro, A.: An amoeboid modular robot that exhibits real-time adaptive reconfiguration. In: Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst., pp. 1496–1501 (2009)Google Scholar

Copyright information

© Haruhisa Kurokawa, Satoshi Murata 2012

Authors and Affiliations

  1. 1.Department of Bioengineering and Robotic Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Intelligent Systems Institute Field Robotics Research GroupNational Institute of Advanced Science and Technology (AIST)TsukubaJapan

Personalised recommendations