Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 681 Accesses

Abstract

Enantioselective total synthesis of the biologically important indole alkaloids, (+)-lysergol, (+)-isolysergol and (+)-lysergic acid is described. Key features of these total synthesis include: (1) a facile synthesis of a chiral 1,3-amino alcohol via the Pd(0) and In(I)-mediated reductive coupling reaction between l-serine-derived 2-ethynylaziridine and formaldehyde; (2) the Cr(II)/Ni(0)-mediated Nozaki−Hiyama−Kishi (NHK) reaction of an indole-3-acetaldehyde with iodoalkyne; and (3) Pd(0)-catalyzed domino cyclization of an amino allene bearing a bromoindolyl group. This domino cyclization enabled direct construction of the C/D ring system of the ergot alkaloids skeleton as well as the creation of the C5 stereogenic center with transfer of the allenic axial chirality to the central chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author planned to develop a new synthetic route to the chiral amino allenes 5 because the synthetic route described in Chap. 4 gave the racemic amino allenes of the type 5 in low diastereoselectivities.

  2. 2.

    The relative configuration of 12 was determined by 1H NOE analysis.

  3. 3.

    The relative configuration of allenic amide 5a was confirmed by comparison with the authentic sample (±)-5a prepared from the known allenic amide (±)-22a, which, in turn, was obtained through an Au-catalyzed Claisen rearrangement of the corresponding propargyl vinyl ether (see Chap. 4).

  4. 4.

    The relative configuration of 4a was confirmed by comparison with the authentic sample prepared from the known compound (±)-23a (see Chap. 4).

  5. 5.

    The author cannot rule out other factors for rationalization of the observed selectivities. For example, the reactive conformer as depicted in F might have better orbital alignment for anti-addition of the amine nucleophile to the allenic moiety activated by Pd(II) than in epi-F, thus leading to a selective formation of the desired product 4a.

  6. 6.

    The reproducibility of the oxidation reaction was significantly dependent on the purity of the Dess-Martin reagent.

  7. 7.

    Separation of the diastereomer at this step is important for the preparation of lysergic acid (1) in high ee, because the transformation of 25 to 1 accompanying isomerization relies on the chirality at C-5.

  8. 8.

    The optical purity of lysergic acid was confirmed by derivatization to methyl isolysergate 25a and lysergate 25b and their chiral HPLC analyses.

References

  1. Moldvai I, Temesvári-Major E, Incze M, Szentirmay É, Gács-Baitz E, Szántay C (2004) J Org Chem 69:5993–6000

    Article  CAS  Google Scholar 

  2. Inoue T, Yokoshima S, Fukuyama T (2009) Heterocycles 79:373–378

    Article  CAS  Google Scholar 

  3. Kurosawa T, Isomura M, Tokuyama H, Fukuyama T (2009) Synlett 775–777

    Google Scholar 

  4. Deck JA, Martin SF (2010) Org Lett 12:2610–2613

    Article  CAS  Google Scholar 

  5. Weibel J-M, Blanc A, Pale P (2008) Chem Rev 108:3149–3173

    Article  CAS  Google Scholar 

  6. Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I (2008) Chem Rev 108:3174–3198

    Article  Google Scholar 

  7. Patil NT, Yamamoto Y (2008) Chem Rev 108:3395–3442

    Article  CAS  Google Scholar 

  8. Widenhoefer RA, Han X (2006) Eur J Org Chem 4555–4563

    Google Scholar 

  9. Shen HC (2008) Tetrahedron 64:3885–3903

    Article  CAS  Google Scholar 

  10. Muzart J (2008) Tetrahedron 64:5815–5849

    Article  CAS  Google Scholar 

  11. Widenhoefer RA (2008) Chem Eur J 14:5382–5391

    Article  CAS  Google Scholar 

  12. Krause N, Belting V, Deutsch C, Erdsack J, Fan H-T, Gockel B, Hoffmann-Röder A, Morita N, Volz F (2008) Pure Appl Chem 80:1063–1069

    Article  CAS  Google Scholar 

  13. Li Z, Brouwer C, He C (2008) Chem Rev 108:3239–3265

    Article  CAS  Google Scholar 

  14. Bongers N, Krause N (2008) Angew Chem Int Ed 47:2178–2181

    Article  CAS  Google Scholar 

  15. Arredondo VM, McDonald FE, Marks TJ (1998) J Am Chem Soc 120:4871–4872

    Article  CAS  Google Scholar 

  16. Arredondo VM, Tian S, McDonald FE, Marks TJ (1999) J Am Chem Soc 121:3633–3639

    Article  CAS  Google Scholar 

  17. Ohno H, Kadoh Y, Fujii N, Tanaka T (2006) Org Lett. 8:947–950

    Article  CAS  Google Scholar 

  18. Myers AG, Zheng B (1996) J Am Chem Soc 118:4492–4493

    Article  CAS  Google Scholar 

  19. Ohno H, Hamaguchi H, Tanaka T (2000) Org Lett 2:2161–2163

    Article  CAS  Google Scholar 

  20. Ohno H, Hamaguchi H, Tanaka T (2001) J Org Chem 66:1867–1875

    Article  CAS  Google Scholar 

  21. Garner P (1984) Tetrahedron Lett 25:5855–5858

    Article  CAS  Google Scholar 

  22. Campbell AD, Raynham TM, Taylor RJK (1998) Synthesis 1707–1709

    Google Scholar 

  23. Ohno H, Hamaguchi H, Ohata M, Kosaka S, Tanaka T (2004) J Am Chem Soc 126:8744–8754

    Article  CAS  Google Scholar 

  24. Hofmeister H, Annen K, Laurent H, Wiechert R (1984) Angew Chem Int Ed Engl 23:727–729

    Article  Google Scholar 

  25. Tokuyama H, Miyazaki T, Yokoshima S, Fukuyama T (2003) Synlett 1512–1514

    Google Scholar 

  26. Somei M, Kizu K, Kunimoto M, Yamada F (1985) Chem Pharm Bull 33:3696–3708

    CAS  Google Scholar 

  27. Kimura M, Futamata M, Mukai R, Tamaru Y (2005) J Am Chem Soc 127:4592–4593

    Article  CAS  Google Scholar 

  28. Harrington PJ, Hegedus LS (1984) J Org Chem 49:2657–2662

    Article  CAS  Google Scholar 

  29. Imamoto T, Kusumoto T, Yokoyama M (1982) J Chem Soc Chem Commun 1042–1044

    Google Scholar 

  30. Takita R, Yakura K, Ohshima T, Shibasaki M (2005) J Am Chem Soc 127:13760–13761

    Article  CAS  Google Scholar 

  31. Lu G, Li X, Chan WL, Chan ASC (2002) Chem Commun 172

    Google Scholar 

  32. Gao G, Moore D, Xie R-G, Pu L (2002) Org Lett 4:4143–4146

    Article  CAS  Google Scholar 

  33. Evans PA, Cui J, Gharpure SJ, Polosukhin A, Zhang H-R (2003) J Am Chem Soc 125:14702–14703

    Article  CAS  Google Scholar 

  34. Okude Y, Hirano S, Hiyama T, Nozaki H (1977) J Am Chem Soc 99:3179–3181

    Article  CAS  Google Scholar 

  35. Jin H, Uenishi J, Christ WJ, Kishi Y (1986) J Am Chem Soc 108:5644–5646

    Article  CAS  Google Scholar 

  36. Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H (1986) J Am Chem Soc 108:6048–6050

    Article  CAS  Google Scholar 

  37. Wan Z-K, Choi H-W, Kang F-A, Nakajima K, Demeke DK, Kishi Y (2002) Org Lett 4:4431–4434

    Article  CAS  Google Scholar 

  38. Choi H-W, Nakajima K, Demeke D, Kang F-A, Jun H-S, Wan Z-KK, Kishi Y (2002) Org Lett 4:4435–4438

    Article  CAS  Google Scholar 

  39. Namba K, Kishi Y (2004) Org Lett 6:5031–5033

    Article  CAS  Google Scholar 

  40. Midland MM, Tramontano A, Kazubski A, Graham RS, Tsai DJS, Cardinv DB (1984) Tetrahedron 40:1371–1380

    Article  CAS  Google Scholar 

  41. Matsumura K, Hashiguchi S, Ikariya T, Noyori R (1997) J Am Chem Soc 119:8738–8739

    Article  CAS  Google Scholar 

  42. Corey EJ, Bakshi RK, Shibata S (1987) J Am Chem Soc 109:5551–5553

    Article  CAS  Google Scholar 

  43. Corey EJ, Bakshi RK (1990) Tetrahedron Lett 31:611–614

    Article  CAS  Google Scholar 

  44. Corey EJ, Helal CJ (1998) Angew Chem Int Ed 37:1986–2012

    Article  CAS  Google Scholar 

  45. Stoll A, Hofmann A, Schlientz W (1949) Helv Chim Acta 32:1947–1956

    Article  CAS  Google Scholar 

  46. Smith S, Timmis GM (1936) J Chem Soc 1440–1444

    Google Scholar 

  47. Moldvai I, Gács-Baitz E, Temesvári-Major E, Russo L, Pápai I, Rissanen K, Szárics É, Kardos J, Szántay C (2007) Heterocycles 71:1075–1095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Inuki, S. (2012). Total Synthesis of (+)-Lysergic Acid, (+)-Lysergol, and (+)-Isolysergol. In: Total Synthesis of Bioactive Natural Products by Palladium-Catalyzed Domino Cyclization of Allenes and Related Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54043-4_5

Download citation

Publish with us

Policies and ethics