Skip to main content

Palladium-Catalyzed Domino Cyclization of Amino Allenes Bearing a Bromoindolyl Group and Its Application to Total Synthesis of Ergot Alkaloids

  • Chapter
  • First Online:
Total Synthesis of Bioactive Natural Products by Palladium-Catalyzed Domino Cyclization of Allenes and Related Compounds

Part of the book series: Springer Theses ((Springer Theses))

  • 601 Accesses

Abstract

Ergot alkaloids and their synthetic analogs have been reported to exhibit broad biological activity. The author investigated direct construction of the C/D ring system of ergot alkaloids based on palladium-catalyzed domino cyclization of amino allenes. With this biscyclization as the key step, total synthesis of (±)-lysergic acid, (±)-lysergol and (±)-isolysergol was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relative configuration of 16a was determined by NOE analyses of the corresponding pyran, obtained by Au-catalyzed stereospecific cyclization [28].

  2. 2.

    The relative configurations of 20a and 20b were confirmed by their conversion to isolysergol and lysergol, respectively.

  3. 3.

    The relative configurations of 21a were confirmed by derivatization of 20a to the same compound.

  4. 4.

    Cleavage of nosyl group in the ester derived from 20 was less effective (20–30% yield) under standard conditions.

  5. 5.

    The relative configuration of 23a was confirmed by conversion to 21a [31].

References

  1. Jacobs W, Craig L (1934) J Biol Chem 104:547–551

    CAS  Google Scholar 

  2. Stoll A, Hofmann A, Troxler F (1949) Helv Chim Acta 32:506–521

    Article  CAS  Google Scholar 

  3. Agurell S (1965) Acta Pharm Suecica 2:357–374

    CAS  Google Scholar 

  4. Agurell S (1966) Acta Pharm Suecica 3:7–10

    CAS  Google Scholar 

  5. Ninomiya I, Kiguchi T (1990) In: Brossi A (ed) The Alkaloids, vol 38. Academic Press, San Diego, pp 1–156

    Google Scholar 

  6. Somei M, Yokoyama Y, Murakami Y, Ninomiya I, Kiguchi T, Naito T (2000) In: Cordell GA (ed) The Alkaloids, vol 54. Academic Press, San Diego, pp 191–257

    Google Scholar 

  7. Kornfeld EC, Fornefeld EJ, Kline GB, Mann MJ, Morrison DE, Jones RG, Woodward RB (1956) J Am Chem Soc 78:3087–3114

    Article  CAS  Google Scholar 

  8. Julia M, LeGoffic F, Igolen J, Baillarge M (1969) Tetrahedron Lett 10:1569–1571

    Article  Google Scholar 

  9. Armstrong VW, Coulton S, Ramage R (1976) Tetrahedron Lett 17:4311–4314

    Article  Google Scholar 

  10. Oppolzer W, Francotte E, Bättig K (1981) Helv Chim Acta 64:478–481

    Article  CAS  Google Scholar 

  11. Rebek J Jr, Tai DF (1983) Tetrahedron Lett 24:859–860

    Article  CAS  Google Scholar 

  12. Kiguchi T, Hashimoto C, Naito T, Ninomiya I (1982) Heterocycles 19:2279–2282

    Article  CAS  Google Scholar 

  13. Kurihara T, Terada T, Yoneda R (1986) Chem Pharm Bull 34:442–443

    CAS  Google Scholar 

  14. Cacchi S, Ciattini PG, Morera E, Ortar G (1988) Tetrahedron Lett 29:3117–3120

    Article  CAS  Google Scholar 

  15. Hendrickson JB, Wang J (2004) Org Lett 6:3–5

    Article  CAS  Google Scholar 

  16. Moldvai I, Temesvári-Major E, Incze M, Szentirmay É, Gács-Baitz E, Szántay C (2004) J Org Chem 69:5993–6000

    Article  CAS  Google Scholar 

  17. Inoue T, Yokoshima S, Fukuyama T (2009) Heterocycles 79:373–378

    Article  CAS  Google Scholar 

  18. Kurosawa T, Isomura M, Tokuyama H, Fukuyama T (2009) Synlett 775–777

    Google Scholar 

  19. Kiguchi T, Hashimoto C, Ninomiya I (1985) Heterocycles 23:1377–1380

    Article  CAS  Google Scholar 

  20. Ninomiya I, Hashimoto C, Kiguchi T, Naito T, Barton DHR, Lusinchi X, Milliet P (1990) J Chem Soc Perkin Trans 1:707–713

    Article  Google Scholar 

  21. Deck JA, Martin SF (2010) Org Lett 12:2610–2613

    Article  CAS  Google Scholar 

  22. Allen MS, Hamaker LK, LaLoggia AJ, Cook JM (1992) Synth Commun 22:2077–2102

    Article  CAS  Google Scholar 

  23. Johnson WS, Frei B, Gopalan AS (1981) J Org Chem 46:1512–1513

    Article  CAS  Google Scholar 

  24. Anderson NH, Denniston AD, McCrae DA (1982) J Org Chem 47:1145–1146

    Article  Google Scholar 

  25. Corey EJ, Erickson BW (1971) J Org Chem 36:3553–3560

    Article  CAS  Google Scholar 

  26. Ireland RE, Wipf P, Xiang JN (1991) J Org Chem 56:3572–3582

    Article  CAS  Google Scholar 

  27. Trost BM, Dong G, Vance JA (2007) J Am Chem Soc 129:4540–4541

    Article  CAS  Google Scholar 

  28. Gockel B, Krause N (2006) Org Lett 8:4485–4488

    Article  CAS  Google Scholar 

  29. Sherry BD, Toste FD (2004) J Am Chem Soc 126:15978–15979

    Article  CAS  Google Scholar 

  30. Bach T, Kather K (1996) J Org Chem 61:7642–7643

    Article  CAS  Google Scholar 

  31. Ballabio M, Sbraletta P, Mantegani S, Brambilla E (1992) Tetrahedron 48:4555–4566

    Article  CAS  Google Scholar 

  32. Lauchli R, Shea KJ (2006) Org Lett 8:5287–5289

    Article  CAS  Google Scholar 

  33. Hong S, Yang J, Weinreb SM (2006) J Org Chem 71:2078–2089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Inuki, S. (2012). Palladium-Catalyzed Domino Cyclization of Amino Allenes Bearing a Bromoindolyl Group and Its Application to Total Synthesis of Ergot Alkaloids. In: Total Synthesis of Bioactive Natural Products by Palladium-Catalyzed Domino Cyclization of Allenes and Related Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54043-4_4

Download citation

Publish with us

Policies and ethics