Skip to main content

Total Synthesis through Palladium-Catalyzed Bis-Cyclization of Bromoallenes

  • Chapter
  • First Online:
  • 613 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Palladium(0)-catalyzed cyclization of bromoallenes bearing hydroxy and benzamide groups as internal nucleophiles stereoselectively provides functionalized tetrahydrofuran. This cyclization was expanded to divergent synthesis of pachastrissamine, a biologically active marine natural product, and its derivatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For improvement of the yield of 12, a slightly modified bromination protocol was used (3 equiv of the copper reagent, 65 °C; see the Experimental Section).

  2. 2.

    For improvement of the yield of 12, a slightly modified bromination protocol was used (3 equiv of the copper reagent, 65 °C; see the Experimental Section).

  3. 3.

    Reaction of triflate 19 with 1.0 equiv of the allyl Grignard reagents gave the oxaazabicycloheptane 18 in 13% yield along with the recovery of the unchanged triflate 19 in 73% yield, without isolation of the intermediate 21. This is presumably due to a highly strained aminal structure of 21 and facile Grignard reaction to the iminium moiety of 22.

References

  1. Kuroda I, Musman M, Ohtani I, Ichiba T, Tanaka J, Garcia-Gravalos D, Higa T (2002) J Nat Prod 65:1505–1506

    Article  CAS  Google Scholar 

  2. Ledroit V, Debitus C, Lavaud C, Massoit G (2003) Tetrahedron Lett 44:225–228

    Article  CAS  Google Scholar 

  3. Canals D, Mormeneo D, Fabriàs G, Llebaria A, Casas J, Delgado A (2009) Bioorg Med Chem 17:235–241

    Article  CAS  Google Scholar 

  4. Salma Y, Lafort E, Therville N, Carpentier S, Bonnafé M-J, Levade T, Génisson Y, Andrieu-Abadie N (2009) Biochem Pharmacol 78:477–485

    Article  CAS  Google Scholar 

  5. Sudhakar N, Kumar AR, Prabhakar A, Jagadeesh B, Rao BV (2005) Tetrahedron Lett 46:325–327

    Article  CAS  Google Scholar 

  6. Bhaket P, Morris K, Stauffer CS, Datta A (2005) Org Lett 7:875–876

    Article  CAS  Google Scholar 

  7. van den Berg R, Boltje T, Verhagen C, Litjens R, Vander Marel G, Overkleeft H (2006) J Org Chem 71:836–839

    Article  Google Scholar 

  8. Du Y, Liu J, Linhardt RJ (2006) J Org Chem 71:1251–1253

    Article  CAS  Google Scholar 

  9. Liu J, Du Y, Dong X, Meng S, Xiao J, Cheng L (2006) Carbohydr Res 341:2653–2657

    Article  CAS  Google Scholar 

  10. Ribes C, Falomir E, Carda M, Marco JA (2006) Tetrahedron 62:5421–5425

    Article  CAS  Google Scholar 

  11. Lee T, Lee S, Kwak YS, Kim D, Kim S (2007) Org Lett 9:429–432

    Article  CAS  Google Scholar 

  12. Reddy LVR, Reddy PV, Shaw AK (2007) Tetrahedron Asymmetr 18:542–546

    Article  CAS  Google Scholar 

  13. Ramana CV, Giri AG, Suryawanshi SB, Gonnade RG (2007) Tetrahedron Lett 48:265–268

    Article  CAS  Google Scholar 

  14. Prasad KR, Chandrakumar A (2007) J Org Chem 72:6312–6315

    Article  CAS  Google Scholar 

  15. Abraham E, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Roberts PM, Russell AJ, Snchez-Fernndez EM, Smith AD, Thomson JE (2007) Tetrahedron Asymmetr 18:2510–2513

    Article  CAS  Google Scholar 

  16. Yakura T, Sato S, Yoshimoto Y (2007) Chem Pharm Bull 55:1284–1286

    Article  CAS  Google Scholar 

  17. Abraham E, Brock EA, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Perkins JH, Roberts PM, Russell AJ, Snchez-Fernndez EM, Scott PM, Smith AD, Thomson JE (2008) Org Biomol Chem 6:1665–1673

    Article  CAS  Google Scholar 

  18. Passiniemi M, Koskinen AMP (2008) Tetrahedron Lett 49:980–983

    Article  CAS  Google Scholar 

  19. Venkatesan K, Srinivasan KV (2008) Tetrahedron Asymmetr 19:209–215

    Article  CAS  Google Scholar 

  20. Enders D, Terteryan V, Palecek J (2008) Synthesis 2278–2282

    Google Scholar 

  21. Ichikawa Y, Matsunaga K, Masuda T, Kotsuki H, Nakano K (2008) Tetrahedron 64:11313–11318

    Article  CAS  Google Scholar 

  22. Yoshimitsu Y, Inuki S, Oishi S, Fujii N, Ohno H (2010) J Org Chem 75:3843–3846

    Article  CAS  Google Scholar 

  23. Abraham E, Davies SG, Roberts PM, Russell AJ, Thomson JE (2008) Tetrahedron: Asymmetry 19:1027–1047

    Article  CAS  Google Scholar 

  24. Cook GR, Shanker PS (1998) Tetrahedron Lett 39:3405–3408

    Article  CAS  Google Scholar 

  25. Cook GR, Shanker PS (1998) Tetrahedron Lett 39:4991–4994

    Article  CAS  Google Scholar 

  26. Lee K-Y, Kim Y-H, Park M-S, Oh C-Y, Ham W-H (1999) J Org Chem 64:9450–9458

    Article  CAS  Google Scholar 

  27. Garner P (1984) Tetrahedron Lett 25:5855–5858

    Article  CAS  Google Scholar 

  28. Campbell AD, Raynham TM, Taylor RJK (1998) Synthesis 1707–1709

    Google Scholar 

  29. Herold P (1988) Helv Chim Acta 71:354–362

    Article  CAS  Google Scholar 

  30. Montury M, Goré J (1980) Synth Commun 10:873–879

    Article  CAS  Google Scholar 

  31. Elsevier CJ, Meijer J, Tadema G, Stehouwer PM, Bos HJT, Vermeer P (1982) J Org Chem 47:2194–2196

    Article  CAS  Google Scholar 

  32. D’Aniello F, Mann A, Taddei M, Wermuth C-G (1994) Tetrahedron Lett 35:7775–7778

    Google Scholar 

  33. D’Aniello F, Mann A, Schoenfelder A, Taddei M (1997) Tetrahedron 53:1447–1456

    Article  Google Scholar 

  34. Ohno H, Hamaguchi H, Ohata M, Tanaka T (2003) Angew Chem Int Ed 42:1749–1753

    Article  CAS  Google Scholar 

  35. Ohno H, Hamaguchi H, Ohata M, Kosaka S, Tanaka T (2004) J Am Chem Soc 126:8744–8754

    Article  CAS  Google Scholar 

  36. Ohno H, Okano A, Kosaka S, Tsukamoto K, Ohata M, Ishihara K, Maeda H, Tanaka T, Fujii N (2008) Org Lett 10:1171–1174

    Article  CAS  Google Scholar 

  37. Ghosh AK, Xi K (2007) Org Lett 9:4013–4016

    Article  CAS  Google Scholar 

  38. Evans PA, Cui J, Gharpure SJ, Polosukhin A, Zhang H-R (2003) J Am Chem Soc 125:14702–14703

    Article  CAS  Google Scholar 

  39. Kotsuki H, Kadota I, Ochi M (1990) J Org Chem 55:4417–4422

    Article  CAS  Google Scholar 

  40. Somfai P (1994) Tetrahedron 50:11315–11320

    Article  CAS  Google Scholar 

  41. Arnold LD, Drover JCG, Vedreras JC (1987) J Am Chem Soc 109:4649–4659

    Article  CAS  Google Scholar 

  42. Hümmer W, Dubois E, Gracza T, Jäger V (1997) Synthesis 634–642

    Google Scholar 

  43. Lipshutz BH, Crow R, Dimock SH, Ellsworth ELJ (1990) J Am Chem Soc 112:4063–4064

    Article  CAS  Google Scholar 

  44. Lipshutz BH, Ellsworth EL, Dimock SH, Smith RAKJ (1990) J Am Chem Soc 112:4404–4410

    Article  CAS  Google Scholar 

  45. Fronza G, Mele A, Pedrocchi-Fantoni G, Pizzi D, Servi S (1990) J Org Chem 55:6216–6219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Inuki, S. (2012). Total Synthesis through Palladium-Catalyzed Bis-Cyclization of Bromoallenes. In: Total Synthesis of Bioactive Natural Products by Palladium-Catalyzed Domino Cyclization of Allenes and Related Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54043-4_2

Download citation

Publish with us

Policies and ethics