Development of efficient synthetic approaches for biologically active compounds, including natural products, is a prominent goal of modern organic chemistry. Transition-metal-catalyzed domino/cascade reactions are a useful tool for the direct construction of complicated compounds. These reactions can enhance the synthetic efficiency, and minimize the requirement for separation processes and waste production (for reviews, see Refs. [1–5]). Allenes are an important class of compounds with unique reactivity because of their cumulative double bonds. They have hybrid characteristics of an alkene and an alkyne, which makes them highly reactive toward a wide range of transition metals. Therefore, many attractive reactions of allenic compounds by transition metal catalysis have been developed (for reviews, see Refs. [6–11]); palladium-catalyzed cyclizations of allenes and related compounds have been used extensively for construction of cyclic compounds (for recent books and reviews on palladium-catalyzed cyclization of allenes, see Refs. [12–15]).


Ergot Alkaloid Total Synthesis Aryl Halide Lysergic Acid Claisen Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tietze LF (1996) Chem Rev 96:115–136CrossRefGoogle Scholar
  2. 2.
    Tietze LF, Brasche G, Gericke K (2006) Domino reactions in organic synthesis. Wiley-VCH, Verlag GmbH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Nicolaou KC, Edmonds DJ, Bulger PG (2006) Angew Chem Int Ed 45:7134–7186CrossRefGoogle Scholar
  4. 4.
    Padwa A, Bur SK (2007) Tetrahedron 63:5341–5378CrossRefGoogle Scholar
  5. 5.
    Poulin J, Grisé-Bard CM, Barriault L (2009) Chem Soc Rev 38:3092–3101CrossRefGoogle Scholar
  6. 6.
    Schuster H, Coppola G (1984) Allenes in organic synthesis. Wiley, New YorkGoogle Scholar
  7. 7.
    Pasto DJ (1984) Tetrahedron 40:2805–2827CrossRefGoogle Scholar
  8. 8.
    Hashmi ASK (2000) Angew Chem Int Ed 39:3590–3593CrossRefGoogle Scholar
  9. 9.
    Bates RW, Satcharoen V (2002) Chem Soc Rev 31:12–21CrossRefGoogle Scholar
  10. 10.
    Ma S (2003) Acc Chem Res 36:701–712CrossRefGoogle Scholar
  11. 11.
    Ma S (2005) Chem Rev 105:2829–2871CrossRefGoogle Scholar
  12. 12.
    Yamamoto Y, Radhakrishnan U (1999) Chem Soc Rev 28:199–207CrossRefGoogle Scholar
  13. 13.
    Zimmer R, Dinesh CU, Nandanan E, Khan FA (2000) Chem Rev 100:3067–3125CrossRefGoogle Scholar
  14. 14.
    Mandai T (2004) In: Krause N, Hashmi ASK (eds) Modern allene chemistry, vol 2. Wiley-VCH, Weinheim, pp 925–972CrossRefGoogle Scholar
  15. 15.
    Ohno H (2005) Chem Pharm Bull 53:1211–1226CrossRefGoogle Scholar
  16. 16.
    Ohno H, Hamaguchi H, Ohata M, Tanaka T (2003) Angew Chem Int Ed 42:1749–1753CrossRefGoogle Scholar
  17. 17.
    Ohno H, Hamaguchi H, Ohata M, Kosaka S, Tanaka T (2004) J Am Chem Soc 126:8744–8754CrossRefGoogle Scholar
  18. 18.
    Hamaguchi H, Kosaka S, Ohno H, Tanaka T (2005) Angew Chem Int Ed 44:1513–1517CrossRefGoogle Scholar
  19. 19.
    Hamaguchi H, Kosaka S, Ohno H, Fujii N, Tanaka T (2007) Chem Eur J 13:1692–1708CrossRefGoogle Scholar
  20. 20.
    Tsuji J, Watanabe H, Minami I, Shimizu I (1985) J Am Chem Soc 107:2196–2198CrossRefGoogle Scholar
  21. 21.
    Minami I, Yuhara M, Watanabe H, Tsuji J (1987) J Organomet Chem 334:225–242CrossRefGoogle Scholar
  22. 22.
    Tsuji J, Minami I (1987) Acc Chem Res 20:140–145CrossRefGoogle Scholar
  23. 23.
    Tsuji J, Mandai T (1995) Angew Chem Int Ed Engl 34:2589–2612CrossRefGoogle Scholar
  24. 24.
    Minami I, Yuhara M, Tsuji J (1987) Tetrahedron Lett 28:629–632CrossRefGoogle Scholar
  25. 25.
    Geng L, Lu X (1990) Tetrahedron Lett 31:111–114CrossRefGoogle Scholar
  26. 26.
    Labrosse J-R, Lhoste P, Sinou D (1999) Tetrahedron Lett 40:9025–9028CrossRefGoogle Scholar
  27. 27.
    Labrosse J-R, Lhoste P, Sinou D (2000) Org Lett 2:527–529CrossRefGoogle Scholar
  28. 28.
    Labrosse J-R, Lhoste P, Sinou D (2001) J Org Chem 66:6634–6642CrossRefGoogle Scholar
  29. 29.
    Zong K, Abboud KA, Reynolds JR (2004) Tetrahedron Lett 45:4973–4975CrossRefGoogle Scholar
  30. 30.
    Yoshida M, Higuchi M, Shishido K (2008) Tetrahedron Lett 49:1678–1681CrossRefGoogle Scholar
  31. 31.
    Yoshida M, Higuchi M, Shishido K (2009) Org Lett 11:4752–4755CrossRefGoogle Scholar
  32. 32.
    Bi H-P, Liu X-Y, Gou F-R, Guo L-N, Duan X-H, Shu X-Z, Liang Y-M (2007) Angew Chem Int Ed 46:7068–7071CrossRefGoogle Scholar
  33. 33.
    Ren Z-H, Guan Z-H, Liang Y-M (2009) J Org Chem 74:3145–3147CrossRefGoogle Scholar
  34. 34.
    Gou F-R, Huo P-F, Bi H-P, Guan Z-H, Liang Y-M (2009) Org Lett 11:3418–3421CrossRefGoogle Scholar
  35. 35.
    Kozawa Y, Mori M (2001) Tetrahedron Lett 42:4869–4873CrossRefGoogle Scholar
  36. 36.
    Kozawa Y, Mori M (2002) Tetrahedron Lett 43:1499–1502CrossRefGoogle Scholar
  37. 37.
    Kozawa Y, Mori M (2003) J Org Chem 68:8068–8074CrossRefGoogle Scholar
  38. 38.
    Yoshida M, Morishita Y, Fujita M, Ihara M (2004) Tetrahedron Lett 45:1861–1864CrossRefGoogle Scholar
  39. 39.
    Ambrogio I, Cacchi S, Fabrizi G (2006) Org Lett 8:2083–2086CrossRefGoogle Scholar
  40. 40.
    Ambrogio I, Cacchi S, Fabrizi G, Prastaro A (2009) Tetrahedron 65:8916–8929CrossRefGoogle Scholar
  41. 41.
    Cacchi S, Fabrizi G, Filisti, E (2009) Synlett 1817–1821Google Scholar
  42. 42.
    Duan X-H, Guo L-N, Bi H-P, Liu X-Y, Liang Y-M (2006) Org Lett 8:5777–5780CrossRefGoogle Scholar
  43. 43.
    Guo L-N, Duan X-H, Bi H-P, Liu X-Y, Liang Y-M (2007) J Org Chem 72:1538–1540CrossRefGoogle Scholar
  44. 44.
    Bi H-P, Guo L-N, Gou F-R, Duan X-H, Liu X-Y, Liang Y-M (2008) J Org Chem 73:4713–4716CrossRefGoogle Scholar
  45. 45.
    Yoshida M, Ihara M (2001) Angew Chem Int Ed 40:616–619CrossRefGoogle Scholar
  46. 46.
    Yoshida M, Fujita M, Ishii T, Ihara M (2003) J Am Chem Soc 125:4874–4881CrossRefGoogle Scholar
  47. 47.
    Ohno H, Okano A, Kosaka S, Tsukamoto K, Ohata M, Ishihara K, Maeda H, Tanaka T, Fujii N (2008) Org Lett 10:1171–1174CrossRefGoogle Scholar
  48. 48.
    Okano A, Tsukamoto K, Kosaka S, Maeda H, Oishi S, Tanaka T, Fujii N, Ohno H (2010) Chem Eur J 16:8410–8418CrossRefGoogle Scholar
  49. 49.
    Okano A, Oishi S, Tanaka T, Fujii N, Ohno H (2010) J Org Chem 75:3396–3400CrossRefGoogle Scholar
  50. 50.
    Davies IW, Scopes DIC, Gallagher T (1993) Synlett 85–87Google Scholar
  51. 51.
    Kang S-K, Baik T-G, Kulak AN (1999) Synlett 324–326Google Scholar
  52. 52.
    Rutjes FPJT, Tjen KCMF, Wolf LB, Karstens WFJ, Schoemaker HE, Hiemstra H (1999) Org Lett 1:717–720CrossRefGoogle Scholar
  53. 53.
    Ohno H, Toda A, Miwa Y, Taga T, Osawa E, Yamaoka Y, Fujii N, Ibuka T (1999) J Org Chem 64:2992–2993CrossRefGoogle Scholar
  54. 54.
    Kang S-K, Baik T-G, Hur Y (1999) Tetrahedron 55:6863–6870CrossRefGoogle Scholar
  55. 55.
    Anzai M, Toda A, Ohno H, Takemoto Y, Fujii N, Ibuka T (1999) Tetrahedron Lett 40:7393–7397CrossRefGoogle Scholar
  56. 56.
    Kang S-K, Kim K-J (2001) Org Lett 3:511–514CrossRefGoogle Scholar
  57. 57.
    Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M (2001) Synlett 263–265Google Scholar
  58. 58.
    Ohno H, Anzai M, Toda A, Oishi S, Fujii N, Tanaka T, Takemoto Y, Ibuka T (2001) J Org Chem 66:4904–4914CrossRefGoogle Scholar
  59. 59.
    Grigg R, Köppen I, Rasparini M, Sridharan V (2001) Chem Commun 964–965Google Scholar
  60. 60.
    Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M (2002) Tetrahedron Asymm 13:1351–1353CrossRefGoogle Scholar
  61. 61.
    Watanabe K, Hiroi K (2003) Heterocycles 59:453–457CrossRefGoogle Scholar
  62. 62.
    Grigg R, Inman M, Kilner C, Köppen I, Marchbank J, Selby P, Sridharan V (2007) Tetrahedron 63:6152–6169CrossRefGoogle Scholar
  63. 63.
    Okano A, Mizutani T, Oishi S, Tanaka T, Ohno H, Fujii N (2008) Chem Commun 3534–3536Google Scholar
  64. 64.
    Cheng X, Ma S (2008) Angew Chem Int Ed 47:4581–4583CrossRefGoogle Scholar
  65. 65.
    Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S (2009) Org Lett 11:1563–1566CrossRefGoogle Scholar
  66. 66.
    Shu W, Ma S (2009) Chem Commun 6198–6200Google Scholar
  67. 67.
    Beccalli EM, Bernasconi A, Borsini E, Broggini G, Rigamonti M, Zecchi G (2010) J Org Chem 75:6923–6932CrossRefGoogle Scholar
  68. 68.
    Shimizu I, Tsuji J (1984) Chem Lett 233–236Google Scholar
  69. 69.
    Larock RC, Berrios-Peña NG, Fried CA (1991) J Org Chem 56:2615–2617CrossRefGoogle Scholar
  70. 70.
    Karstens WFJ, Rutjes FPJT, Hiemstra H (1997) Tetrahedron Lett 38:6275–6278CrossRefGoogle Scholar
  71. 71.
    Karstens WFJ, Stol M, Rutjes FPJT, Hiemstra H (1998) Synlett 1126–1128Google Scholar
  72. 72.
    Ma S, Gao W (2002) Org Lett 4:2989–2992CrossRefGoogle Scholar
  73. 73.
    Ma S, Yu F, Gao W (2003) J Org Chem 68:5943–5949CrossRefGoogle Scholar
  74. 74.
    Ma S, Yu F, Li J, Gao W (2007) Chem Eur J 13:247–254CrossRefGoogle Scholar
  75. 75.
    Stevens RR, Shier GD (1970) J Organometal Chem 21:495–499CrossRefGoogle Scholar
  76. 76.
    Lathbury D, Vernon P, Gallagher T (1986) Tetrahedron Lett 27:6009–6012CrossRefGoogle Scholar
  77. 77.
    Prasad JS, Liebeskind LS (1988) Tetrahedron Lett 29:4257–4260CrossRefGoogle Scholar
  78. 78.
    Fox DNA, Lathbury D, Mahon MF, Molloy KC, Gallagher T (1991) J Am Chem Soc 113:2652–2656CrossRefGoogle Scholar
  79. 79.
    Kimura M, Fugami K, Tanaka S, Tamaru Y (1992) J Org Chem 57:6377–6379CrossRefGoogle Scholar
  80. 80.
    Kimura M, Tanaka S, Tamaru Y (1995) J Org Chem 60:3764–3772CrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations