Skip to main content

New Insights from a Focused Library Approach Aiming at Development of Inhibitors of Dual-Specificity Protein Phosphatases

  • Conference paper
  • First Online:
Chembiomolecular Science

Abstract

Protein phosphorylations are important biological reactions participating in intracellular signal transductions [1], and they control a diverse set of cellular events including cell proliferation, cell-cycle regulation, and differentiation. Key players in protein phosphorylations are protein kinases and protein phosphatases, which dynamically control the levels of the phosphorylated proteins in cells. Phosphorylation mainly occurs at the hydroxyl groups of serine, threonine, and tyrosine residues in eukaryotic cells [2]. Protein kinases and phosphatases are classified according to their substrate specificity of phosphorylation and dephosphorylation. Human genome analysis indicates that there are 518 protein kinases [3], which can be divided into 90 tyrosine kinases and 428 serine/threonine kinases [4]. Dysfunction of protein kinases is well established to be implicated in the disruption of normal signal transduction pathways and in tumor formation. Therefore, kinase inhibitors are expected to be useful as biological tools and therapeutic agents, so there is both academic and commercial interest in developing specific inhibitors for certain protein kinases [5]. A number of such inhibitors, such as Gleevec, Iressa, Tarceva, and Sutent, have been approved as therapeutic agents by the Food and Drug Administration in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  2. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  3. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  4. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25

    Article  CAS  PubMed  Google Scholar 

  5. Grant SK (2009) Therapeutic protein kinase inhibitors. Cell Mol Life Sci 66:1163–1177

    Article  CAS  PubMed  Google Scholar 

  6. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  7. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  CAS  PubMed  Google Scholar 

  8. Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    CAS  PubMed  Google Scholar 

  9. Rudolph J (2007) Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry 46:3595–3604

    Article  CAS  PubMed  Google Scholar 

  10. Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191

    Article  CAS  PubMed  Google Scholar 

  11. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60:261–310

    Article  CAS  PubMed  Google Scholar 

  12. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  13. Hamaguchi T, Sudo T, Osada H (1995) RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. FEBS Lett 372:54–58

    Article  CAS  PubMed  Google Scholar 

  14. Cerignoli F, Rahmouni S, Ronai Z, Mustelin T (2006) Regulation of MAP kinases by the VHR dual-specific phosphatase: implications for cell growth and differentiation. Cell Cycle 5:2210–2215

    Article  CAS  PubMed  Google Scholar 

  15. Shinagawa S, Muroi M, Ito T, Hida T (1993) Preparation of tetronic acid derivatives as phospholipase A2 inhibitors. Application: JP Patent 1991-190103, 05043568

    Google Scholar 

  16. Sodeoka M, Sampe R, Kagamizono T, Osada H (1996) Asymmetric synthesis of RK-682 and its analogs, and evaluation of their protein phosphatase inhibitory activities. Tetrahedron Lett 37:8775–8778

    Article  CAS  Google Scholar 

  17. Ishibashi T, Bottaro DP, Chan A, Miki T, Aaronson SA (1992) Expression cloning of a human dual-specificity phosphatase. Proc Natl Acad Sci USA 89:12170–12174

    Article  CAS  PubMed  Google Scholar 

  18. Todd JL, Tanner KG, Denu JM (1999) Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem 274:13271–13280

    Article  CAS  PubMed  Google Scholar 

  19. Alonso A, Saxena M, Williams S, Mustelin T (2001) Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem 276:4766–4771

    Article  CAS  PubMed  Google Scholar 

  20. Miller JL (2006) Recent developments in focused library design: targeting gene-families. Curr Top Med Chem 6:19–29

    Article  CAS  PubMed  Google Scholar 

  21. Stockwell BR (2004) Exploring biology with small organic molecules. Nature (Lond) 432:846–854

    Article  CAS  Google Scholar 

  22. Yuvaniyama J, Denu JM, Dixon JE, Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science 272:1328–1331

    Article  CAS  PubMed  Google Scholar 

  23. Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93:617–625

    Article  CAS  PubMed  Google Scholar 

  24. Sodeoka M, Sampe R, Kojima S, Baba Y, Usui T, Ueda K, Osada H (2001) Synthesis of a tetronic acid library focused on inhibitors of tyrosine and dual-specificity protein phosphatases and its evaluation regarding VHR and cdc25B inhibition. J Med Chem 44:3216–3222

    Article  CAS  PubMed  Google Scholar 

  25. Usui T, Kojima S, Kidokoro S, Ueda K, Osada H, Sodeoka M (2001) Design and synthesis of a dimeric derivative of RK-682 with increased inhibitory activity against VHR, a dual-specificity ERK phosphatase: implications for the molecular mechanism of the inhibition. Chem Biol 8:1209–1220

    Article  CAS  PubMed  Google Scholar 

  26. Sodeoka M, Baba Y (2001) Development of protein phosphatases inhibitors: a focused library approach. J Synth Org Chem Jpn 59:1095–1102

    Article  CAS  Google Scholar 

  27. Ishida K, Teruya T, Simizu S, Osada H (2004) Exploitation of heparanase inhibitors from microbial metabolites using an efficient visual screening system. J Antibiot (Tokyo) 57:136–142

    Article  CAS  Google Scholar 

  28. Ishida K, Hirai G, Murakami K, Teruya T, Simizu S, Sodeoka M, Osada H (2004) Structure-based design of a selective heparanase inhibitor as an antimetastatic agent. Mol Cancer Ther 3:1069–1077

    Article  CAS  PubMed  Google Scholar 

  29. Saito K, Yamagichu T (1978) NMR spectroscopic studies of the tautomerism in tetramic acid analogs and their anilides. III. Polar solvent effects on the tautomeric populations. Bull Chem Soc Jpn 51:651–652

    Article  CAS  Google Scholar 

  30. Hirai G, Tsuchiya A, Koyama Y, Otani Y, Oonuma K, Dodo K, Simizu S, Osada H, Sodeoka M (2011) Development of a Vaccinia H1-related (VHR) phosphatase inhibitor with a nonacidic phosphate-mimicking core structure. ChemMedChem 6:617–622

    Article  CAS  PubMed  Google Scholar 

  31. Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W, Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol 8:524–531

    Article  CAS  PubMed  Google Scholar 

  32. Kang TH, Kim KT (2006) Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat Cell Biol 8:863–869

    Article  CAS  PubMed  Google Scholar 

  33. Henkens R, Delvenne P, Arafa M, Moutschen M, Zeddou M, Tautz L, Boniver J, Mustelin T, Rahmouni S (2008) Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer 8:147–155

    Article  PubMed  Google Scholar 

  34. Arnoldussen YJ, Lorenzo PI, Pretorius ME, Waehre H, Risberg B, Maelandsmo GM, Danielsen HE, Saatcioglu F (2008) The mitogen-activated protein kinase phosphatase vaccinia H1-related protein inhibits apoptosis in prostate cancer cells and is overexpressed in prostate cancer. Cancer Res 68:9255–9264

    Article  CAS  PubMed  Google Scholar 

  35. Hamaguchi T, Masuda A, Morino T, Osada H (1997) Stevastelins, a novel group of immunosuppressants, inhibit dual-specificity protein phosphatases. Chem Biol 4:279–286

    Article  CAS  PubMed  Google Scholar 

  36. Cebula RE, Blanchard JL, Boisclair MD, Pal K, Bockovich NJ (1997) Synthesis and phosphatase inhibitory activity of analogs of sulfircin. Bioorg Med Chem Lett 7:2015–2020

    Article  CAS  Google Scholar 

  37. Bergnes G, Gilliam CL, Boisclair MD, Blanchard JL, Blake KV, Epstein DM, Pal K (1999) Generation of an Ugi library of phosphate mimic-containing compounds and identification of novel dual specific phosphatase inhibitors. Bioorg Med Chem Lett 9:2849–2854

    Article  CAS  PubMed  Google Scholar 

  38. Ueda K, Usui T, Nakayama H, Ueki M, Takio K, Ubukata M, Osada H (2002) 4-Isoavenaciolide covalently binds and inhibits VHR, a dual-specificity phosphatase. FEBS Lett 525:48–52

    Article  CAS  PubMed  Google Scholar 

  39. Wu S, Vossius S, Rahmouni S, Miletic AV, Vang T, Vazquez-Rodriguez J, Cerignoli F, Arimura Y, Williams S, Hayes T, Moutschen M, Vasile S, Pellecchia M, Mustelin T, Tautz L (2009) Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells. J Med Chem 52:6716–6723

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zhang B, Wang M, Carr BI (2005) Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. J Cell Physiol 204:437–444

    Article  CAS  PubMed  Google Scholar 

  41. Xia K, Lee RS, Narsimhan RP, Mukhopadhyay NK, Neel BG, Roberts TM (1999) Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A. Mol Cell Biol 19:4819–4824

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Uehara Memorial Foundation (Japan) and project funding from RIKEN (Japan). We would like to thank Prof. Hiroyuki Osada, Prof. Siro Simizu, Prof. Takeo Usui, Dr. Keisuke Ishida, and Dr. Ngit Shin Lai (RIKEN, Japan) for their collaboration in this work. We are also grateful to our co-workers at RIKEN, Ms. Kana Oonuma, Mr. Yusuke Koyama, Dr. Yuko Otani, and other coworkers and collaborators listed in the references, for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikiko Sodeoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Hirai, G., Tsuchiya, A., Sodeoka, M. (2012). New Insights from a Focused Library Approach Aiming at Development of Inhibitors of Dual-Specificity Protein Phosphatases. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_7

Download citation

Publish with us

Policies and ethics