Inhibitors of Fatty Acid Amide Hydrolase

Conference paper


High pressure liquid chromatography (HPLC) fractionation of the cerebrospinal fluid (CSF) from sleep-deprived cats led to the detection of a substance that accumulated under conditions of sleep deprivation [1]. FABHRMS provided a best-fit molecular formula of C18H35NO and MS2/MS3revealed a lipid fragmentation pattern. Given the simplicity of the molecule, candidate lipid structures incorporating the molecular formula and correct degree of unsaturation were prepared and correlated with the endogenous substance (Fig. 1) [2]. Oleamide (1) proved identical with the authentic material and, with a recognition of its characteristics and solubility properties, sufficient amounts (300–400 μg) of the endogenous lipid were isolated from the CSF to permit an unambiguous correlation [2, 3]. Oleamide was shown to induce physiological sleep in rats, mice, and cats in a dose-dependent manner [3]. As in physiological sleep, the sleeping animals maintained the ability to respond to sound with an orienting reflex and attention directed toward the source. The examination of a number of close structural analogues revealed that this effect is specific for oleamide. These studies identified oleamide as an endogenous signaling fatty acid amide and provided the second prototypical member of a new and growing class of signaling molecules: fatty acid amides [4, 5].


High Pressure Liquid Chromatography Fatty Acid Amide Hydrolase Spinal Nerve Ligation Oxyanion Hole Serine Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the financial support of the National Institutes of Health (DA015648), and the efforts of our long-time collaborators (R.A. Lerner, B.F. Cravatt, S.J. Henriksen, N.B. Gilula, G. Siuzdak, A.H. Lichtman, E.J. Bilsky, and R.C. Stevens).


  1. 1.
    Lerner RA, Siuzdak G, Prospero-Garcia O, Henriksen SJ, Boger DL, Cravatt BF (1994) Cerebrodiene: a brain lipid isolated from sleep-deprived cats. Proc Natl Acad Sci USA 91:9505–9508PubMedCrossRefGoogle Scholar
  2. 2.
    Cravatt BF, Lerner RA, Boger DL (1996) Structure determination of an endogenous sleep-inducing lipid, cis-9-octadecenoamide (oleamide): a synthetic approach to the chemical analysis of trace quantities of a natural product. J Am Chem Soc 118:580–590CrossRefGoogle Scholar
  3. 3.
    Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268:1506–1509PubMedCrossRefGoogle Scholar
  4. 4.
    Boger DL, Henriksen SJ, Cravatt BF (1998) Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Curr Pharm Des 4:303–314PubMedGoogle Scholar
  5. 5.
    Ezzili C, Otrubova K, Boger DL (2010) Fatty acid amide signaling molecules. Bioorg Med Chem Lett 20:5959–5968PubMedCrossRefGoogle Scholar
  6. 6.
    Wilcox BJ, Ritenour-Rodgers KJ, Asser AS, Baumgart LE, Baumgart MA, Boger DL, Patterson JE, DeBlassio JL, deLong MA, Glufke U, Henz ME, King L III, Merkler KA, Robleski JJ, Vederas JC, Merkler DJ (1999) N-acylglycine amidation: implications for the biosynthesis of fatty acid primary amides. Biochemistry 38:3235–3245PubMedCrossRefGoogle Scholar
  7. 7.
    Boger DL, Patterson JE, Jin Q (1998) Structural requirements for 5-HT2Aand 5-HT1Areceptor potentiation by the biologically active lipid oleamide. Proc Natl Acad Sci USA 95:4102–4107PubMedCrossRefGoogle Scholar
  8. 8.
    Yost CS, Hampson AJ, Leonoudakis D, Koblin DD, Bornheim LM, Gray AT (1998) Oleamide potentiates benzodiazepine-sensitive gamma-aminobutyric acid receptor activity but does not alter minimum alveolar anesthetic concentration. Anesth Analg 86:1294–1300PubMedGoogle Scholar
  9. 9.
    Verdon B, Zheng J, Nicholson RA, Ganellin CR, Lees G (2000) Stereoselective modulatory actions of oleamide on GABAAreceptors and voltage-gated Na+channels in vitro: a putative endogenous ligand for depressant drug sites in the CNS. Br J Pharmacol 129:283–290PubMedCrossRefGoogle Scholar
  10. 10.
    Nicholson RA, Zheng J, Ganellin CR, Verdon B, Less G (2001) Anesthetic-like interaction of the sleep-inducing lipid oleamide with voltage-gated sodium channels in mammalian brain. Anesthesia 94:120–128CrossRefGoogle Scholar
  11. 11.
    Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792PubMedCrossRefGoogle Scholar
  12. 12.
    Boger DL, Patterson JE, Guan X, Cravatt BF, Lerner RA, Gilula NB (1998) Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc Natl Acad Sci USA 95:4810–4815PubMedCrossRefGoogle Scholar
  13. 13.
    Boger DL, Sato H, Lerner AE, Guan X, Gilula NB (1999) Arachidonic acid amide inhibitors of gap junction cell–cell communication. Bioorg Med Chem Lett 9:1151–1154PubMedCrossRefGoogle Scholar
  14. 14.
    Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanus LO, Boger DL, Rice KC, Basile AS (2001) Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J Pharmacol Exp Ther 299:332–342PubMedGoogle Scholar
  15. 15.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty acid amides. Nature (Lond) 384:83–87CrossRefGoogle Scholar
  16. 16.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedCrossRefGoogle Scholar
  17. 17.
    Giang DK, Cravatt BF (1997) Molecular characterization of human and mouse fatty acid amide hydrolase. Proc Natl Acad Sci USA 94:2238–2242PubMedCrossRefGoogle Scholar
  18. 18.
    Cravatt BF, Lichtman AH (2003) Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 7:469–775PubMedCrossRefGoogle Scholar
  19. 19.
    Thomas EA, Cravatt BF, Danielson PE, Gilula NB, Sutcliffe JG (1997) Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J Neurosci Res 50:1047–1052PubMedCrossRefGoogle Scholar
  20. 20.
    Egertova M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–496PubMedCrossRefGoogle Scholar
  21. 21.
    McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432PubMedCrossRefGoogle Scholar
  22. 22.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376PubMedCrossRefGoogle Scholar
  23. 23.
    Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt BF, Mechoulam R, Buettner R, Werner S, Di Marzo V, Tueting T, Zimmer A (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316:1494–1497PubMedCrossRefGoogle Scholar
  24. 24.
    Huitrón-Reséndiz S, Sanchez-Alavez M, Wills DN, Cravatt BF, Henriksen SJ (2004) Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase. Sleep 27:857–865PubMedGoogle Scholar
  25. 25.
    Boger DL, Fecik RA, Patterson JE, Miyauchi H, Patricelli MP, Cravatt BF (2000) Fatty acid amide hydrolase substrate specificity. Bioorg Med Chem Lett 10:2613–2616PubMedCrossRefGoogle Scholar
  26. 26.
    Patterson JE, Ollmann IR, Cravatt BF, Boger DL, Wong C-H, Lerner RA (1996) Inhibition of oleamide hydrolase catalyzed hydrolysis of the endogenous sleep-inducing lipid: cis-9-octadecenamide. J Am Chem Soc 118:5938–5945CrossRefGoogle Scholar
  27. 27.
    Boger DL, Sato H, Lerner AE, Austin BJ, Patterson JE, Patricelli MP, Cravatt BF (1999) Trifluoromethyl ketone inhibitors of fatty acid amide hydrolase: a probe of structural and conformational features contributing to inhibition. Bioorg Med Chem Lett 9:265–270PubMedCrossRefGoogle Scholar
  28. 28.
    Patricelli MP, Patterson JE, Boger DL, Cravatt BF (1998) An endogenous REM sleep inducing compound is a potent competitive inhibitor of fatty acid amide hydrolase (FAAH). Bioorg Med Chem Lett 8:613–618PubMedCrossRefGoogle Scholar
  29. 29.
    Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, Wilkie GD, Austin BJ, Patricelli MP, Cravatt B (2000) Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 97:5044–5049PubMedCrossRefGoogle Scholar
  30. 30.
    Boger DL, Miyauchi H, Hedrick MP (2001) α-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and α-substitution. Bioorg Med Chem Lett 11:1517–1520PubMedCrossRefGoogle Scholar
  31. 31.
    Boger DL, Miyauchi H, Du W, Hardouin C, Fecik RA, Cheng H, Hwang I, Hedrick MP, Leung D, Acevedo O, Guimaráes CRW, Jorgensen WL, Cravatt BF (2005) Discovery of a potent, selective, and efficacious class of reversible α-ketoheterocycle inhibitors of fatty acid amide hydrolase as analgesics. J Med Chem 48:1849–1856PubMedCrossRefGoogle Scholar
  32. 32.
    Leung D, Du W, Hardouin C, Cheng H, Hwang I, Cravatt BF, Boger DL (2005) Discovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: concurrent optimization of enzyme inhibitor potency and selectivity. Bioorg Med Chem Lett 15:1423–1428PubMedCrossRefGoogle Scholar
  33. 33.
    Romero FA, Du W, Hwang I, Rayl TJ, Kimball FS, Leung D, Hoover HS, Apodaca RL, Breitenbucher JG, Cravatt BF, Boger DL (2007) Potent and selective α-ketoheterocycle-based inhibitors of the anandamide and oleamide catabolizing enzyme, fatty acid amide hydrolase. J Med Chem 50:1058–1068PubMedCrossRefGoogle Scholar
  34. 34.
    Hardouin C, Kelso MJ, Romero FA, Rayl TJ, Leung D, Hwang I, Cravatt BF, Boger DL (2007) Structure–activity relationships of α-ketooxazole inhibitors of fatty acid amide hydrolase. J Med Chem 50:3359–3368PubMedCrossRefGoogle Scholar
  35. 35.
    Kimball FS, Romero FA, Ezzili C, Garfunkle J, Rayl TJ, Hochstatter DG, Hwang I, Boger DL (2008) Optimization of α-ketooxazole inhibitors of fatty acid amide hydrolase. J Med Chem 51:937–947PubMedCrossRefGoogle Scholar
  36. 36.
    Garfunkle J, Ezzili C, Rayl TJ, Hochstatter DG, Hwang I, Boger DL (2008) Optimization of the central heterocycle of α-ketoheterocycle inhibitors of fatty acid amide hydrolase. J Med Chem 51:4393–4403CrossRefGoogle Scholar
  37. 37.
    Ezzili C, Mileni M, McGlinchey N, Long JZ, Kinsey SG, Hochstatter DG, Stevens RC, Lichtman AH, Cravatt BF, Bilsky EJ, Boger DL (2011) Reversible competitive α-ketoheterocycle inhibitors of fatty acid amide hydrolase containing additional conformational constraints in the acyl side chain: orally active, long acting analgesics. J Med Chem 54:2805–2822PubMedCrossRefGoogle Scholar
  38. 38.
    Guimaráes CRW, Boger DL, Jorgensen WL (2005) Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J Am Chem Soc 127:17377–17384PubMedCrossRefGoogle Scholar
  39. 39.
    Lichtman AH, Leung D, Shelton CC, Saghatelian A, Hardouin C, Boger DL, Cravatt BF (2004) Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 311:441–448PubMedCrossRefGoogle Scholar
  40. 40.
    Schlosburg JE, Boger DL, Cravatt BF, Lichtman AH (2009) Endocannabinoid modulation of scratching response in an acute allergenic model: new prospective neural therapeutic target for pruritus. J Pharmacol Exp Ther 329:314–323PubMedCrossRefGoogle Scholar
  41. 41.
    Kinsey SG, Long JZ, O’Neal ST, Abdulla RA, Poklis JL, Boger DL, Cravatt BF, Lichtman AH (2009) Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther 330:902–910PubMedCrossRefGoogle Scholar
  42. 42.
    Romero FA, Hwang I, Boger DL (2006) Delineation of a fundamental α-ketoheterocycle ­substituent effect for use in the design of enzyme inhibitors. J Am Chem Soc 128:14004–14005PubMedCrossRefGoogle Scholar
  43. 43.
    DeMartino JK, Garfunkle J, Hochstatter DG, Cravatt BF, Boger DL (2008) Exploration of a fundamental substituent effect of α-ketoheterocycle enzyme inhibitors: potent and selective inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 18:5842–5846PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96:14694–14699PubMedCrossRefGoogle Scholar
  45. 45.
    Leung D, Hardouin C, Boger DL, Cravatt BF (2003) Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat Biotechnol 21:687–691PubMedCrossRefGoogle Scholar
  46. 46.
    Mileni M, Garfunkle J, DeMartino JK, Cravatt BF, Boger DL, Stevens RC (2009) Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by α-ketoheterocycle inhibitors revealed from cocrystal structures. J Am Chem Soc 131:10497–10506PubMedCrossRefGoogle Scholar
  47. 47.
    Mileni M, Garfunkle J, Kimball FS, Cravatt BF, Stevens RC, Boger DL (2010) X-ray crystallographic analysis of α-ketoheterocycle inhibitors bound to a humanized variant of fatty acid amide hydrolase. J Med Chem 53:230–240PubMedCrossRefGoogle Scholar
  48. 48.
    Mileni M, Garfunkle J, Ezzili C, Cravatt BF, Stevens RC, Boger DL (2011) Fluoride-mediated capture of a noncovalent bound state of a reversible covalent enzyme inhibitor: X-ray crystallographic analysis of an exceptionally potent α-ketoheterocycle inhibitor of fatty acid amide hydrolase. J Am Chem Soc 133:4092–4100PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of ChemistryThe Scripps Research InstituteLa JollaUSA

Personalised recommendations