Skip to main content

Mechanism of Action of New Antiinfectious Agents from Microorganisms

  • Conference paper
  • First Online:
Chembiomolecular Science
  • 1205 Accesses

Abstract

Currently, drug-resistant bacteria and multidrug-resistant bacteria have spread throughout the world. It is increasingly necessary to develop anti-infectives by a new approach. It is also important to elucidate new molecular targets that are responsible for microbial growth, pathogenicity, and infection. Our research group has conducted original screening systems to search for new bioactive compounds from microorganisms. During these screenings, we discovered some anti-infectives that have unique structures and biological activity. We have investigated target molecules that are involved in their mechanism of action by biochemical and genetic approach. In this study, we describe the latest findings for lariatin A, an anti-mycobacterial agent, and cyslabdan, a potentiator of β-lactam activity against methicillin-resistant Staphylococcus aureus(MRSA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIAID’s Tuberculosis Antimicrobial Acquisition & Coordinating Facility (TAACF). Website: http://www.Taacf.org/about-TB-background.html. Accessed 18 Jan 2010

  2. O’Brien RJ (2001) Global alliance for TB drug development. Scientific blueprint for TB drug development. Tuberculosis 81:1–52

    Article  Google Scholar 

  3. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Kobayashi S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcussp. K01-B-0171, have a lasso structure. J Am Chem Soc 128:7486–7491

    Article  CAS  PubMed  Google Scholar 

  4. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostiiK01-B0171. J Antibiot (Tokyo) 60:357–363

    Article  CAS  Google Scholar 

  5. Iwatsuki M, Koizumi Y, Gouda H, Hirono S, Tomoda H, Omura S (2009) Lys17 in the ‘lasso’ peptide lariatin A is responsible for anti-mycobacterial activity. Bioorg Med Chem Lett 19:2888–2890

    Article  CAS  PubMed  Google Scholar 

  6. Delgado M, Rintoul M, Farias R, Salomon R (2001) Escherichia coliRNA polymerase is the target of the cylcopeptide antibiotic microcin J25. J Bacteriol 183:4543–4550

    Article  CAS  PubMed  Google Scholar 

  7. Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney R, Landick R, Farias R, Salomon R, Severinov K (2002) Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J Biol Chem 277:50867–50875

    Article  CAS  PubMed  Google Scholar 

  8. Mukhopadhyay J, Sineva E, Knight J, Levy R, Ebright R (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within, and obstructing, the RNA polymerase secondary channel. Mol Cell 14:739–751

    Article  CAS  PubMed  Google Scholar 

  9. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis J, Borukhov S, Wang M, Severinov K (2004) Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25. Mol Cell 14:753–762

    Article  CAS  PubMed  Google Scholar 

  10. Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA, Severinov K (2011) The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J Mol Biol. doi:10.1016/j.jmb.2011.02.060

    Google Scholar 

  11. Wang J, Soisson SM, Young K et al (2006) Platensimycin is a selective FabF inhibitor with potent antibiotics properties. Nature 441:358–361

    Article  CAS  PubMed  Google Scholar 

  12. Cook TM, Brown KG, Boyle JV, Goss WA (1966) Bacterial action of nalidixic acid on Bacillus subtilis. J Bacteriol 92:1510–1514

    CAS  PubMed  Google Scholar 

  13. Klann AG, Belanger AE, Abanes-De M, Lee JY, Hatfull GF (1988) Characterization of the dnaGlocus in Mycobacterium smegmatisreveals linkage of DNA replication and cell division. J Bacteriol 180:65–72

    Google Scholar 

  14. Grompe M, Versalovic J, Koeuth T, Lupski JR (1991) Mutations in the Escherichia coli dnaGgene suggest coupling between DNA replication and chromosome partitioning. J Bacteriol 173:1268–1278

    CAS  PubMed  Google Scholar 

  15. Lonetto M, Gribskov M, Gross CA (1992) The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    CAS  PubMed  Google Scholar 

  16. Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD (2000) The bacterial enhancer-dependent sigma 54 (SigN) transcription factor. J Bacteriol 182:4129–4136

    Article  CAS  PubMed  Google Scholar 

  17. Waagmeester A, Thompson J, Reyrat J-M (2005) Identifying sigma factors in Mycobacterium smegmatisby comparative genome analysis. Trends Microbiol 13:505–509

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigue S, Provvedi R, Jacques P-E, Gaudreau L, Manganelli R (2006) The factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941

    Article  CAS  PubMed  Google Scholar 

  19. Yuzhakov A, Kelman Z, O’Donnell M (1999) Trading places on DNA: a three-point switch underles primes handoff from primase to the replicative DNA polymerase. Cell 96:153–163

    Article  CAS  PubMed  Google Scholar 

  20. Hegde SP, Qin M-H, Li X-H, Atkinson MAL, Clark AJ, Rajagopalan M, Madiraju MVVS (1996) Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci USA 93(25):14468–14473

    Article  CAS  PubMed  Google Scholar 

  21. Anderson DG, Kowalczykowski SC (1998) SSB protein controls RecBCD enzyme nuclease activity during unwinding: a new role for looped intermediates. J Mol Biol 282:275–285

    Article  CAS  PubMed  Google Scholar 

  22. Trovcević Z, Petranović M, Brcić-Kostić K, Petranović D, Lers N, Salaj-Smic E (1991) A possible interaction of single-standed binding protein and RecA protein during post-ultraviolet DNA synthesis. Biochimie 73:515–517

    Article  PubMed  Google Scholar 

  23. Lu D, Keck JK (2008) Structural basis of Escherichia colisingle-stranded DNA binding protein stimulation of exonuclease I. Proc Natl Acad Sci USA 105:9169–9174

    Article  CAS  PubMed  Google Scholar 

  24. Tomasz A (1994) Multiple-antibiotic resistant pathogenic bacteria. N Engl J Med 330:1247–1251

    Article  CAS  PubMed  Google Scholar 

  25. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC (1997) Methicillin-resistant Staphylococcus aureusclinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    Article  CAS  PubMed  Google Scholar 

  26. Centers for Disease Control and Prevention (1997) Staphylococcus aureuswith reduced susceptibility to vancomycin: United States. MMWR Morb Mortal Wkly Rep 46:765–766

    Google Scholar 

  27. Omura S (1999) Antiinfective drugs into the 21st century. Nippon Saikingaku Zasshi 54:795–813 (in Japanese)

    Article  CAS  PubMed  Google Scholar 

  28. Fukumoto A, Kim YP, Matsumoto A, Takahashi Y, Shiomi K, Tomoda H, Omura S (2008) Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomycessp. K04-0144. I. Taxonomy, fermentation, isolation and structural elucidation. J Antibiot (Tokyo) 61:1–6

    Article  CAS  Google Scholar 

  29. Fukumoto A, Kim YP, Hanaki H, Shiomi K, Tomoda H, Omura S (2008) Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomycessp. K04-0144. II. Biological activities. J Antibiot (Tokyo) 61:7–10

    Article  CAS  Google Scholar 

  30. Berger-Bächi B, Barberis-Maino L, Strässle A, Kayser FH (1989) FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen Genet 219:263–269

    Article  PubMed  Google Scholar 

  31. Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H (1991) femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureusstrains. J Bacteriol 173:3507–3513

    CAS  PubMed  Google Scholar 

  32. Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I (2004) In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 53:675–685

    Article  CAS  PubMed  Google Scholar 

  33. Strandén AM, Ehlert K, Labischinski H, Berger-Bächi B (1997) Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179:9–16

    PubMed  Google Scholar 

  34. Tomasz A (2000) The staphylococcal cell wall. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens. American Society for Microbiology, Washington, pp 463–470

    Google Scholar 

  35. de Jonge BL, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureusstrain. J Biol Chem 267:11255–11259

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Uehara Memorial Foundation and Kakenhi 21310146 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We express our thanks to Prof. Satoshi Omura and Prof. Yoko Takahashi (Kitasato University) for much help with this study, and to Dr. Yoshio Shibagaki (Kitasato University) for LC–MS/MS analysis. We also thank Dr. Makoto Matsumoto (Otsuka Pharmaceutical Co., Ltd.) for the MIC measurement of M. tuberculosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tomoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Koyama, N., Tomoda, H. (2012). Mechanism of Action of New Antiinfectious Agents from Microorganisms. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_29

Download citation

Publish with us

Policies and ethics