Enzymes as Chemotherapeutic Agents

  • Ronald T. Raines
Conference paper


Typical chemotherapeutic agents act by disrupting the flow of biochemical information (Fig. 1). The most common strategy uses small organic molecules to inhibit the function of a protein. Information flow can be disrupted at earlier stages. For example, an antisense oligonucleotide (Vitravene; Isis Pharmaceuticals) acts at the RNA level to treat eye infections caused by cytomegalovirus.


Ribonuclease Inhibitor Lysosomal Storage Disease Biochemical Information Northern Leopard Frog Ribonucleolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to the graduate students and postdoctorates who have worked with me on the development of ribonucleases as chemotherapeutic agents. Their names dominate the list of references. Our work has been supported by grants R01 CA073808 from the NIH and 51670 from the Bill & Melinda Gates Foundation.


  1. 1.
    Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1065CrossRefPubMedGoogle Scholar
  2. 2.
    Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230CrossRefPubMedGoogle Scholar
  3. 3.
    Moore S, Stein WH (1973) Chemical structures of pancreatic ribonuclease and deoxyribonuclease. Science 180:458–464CrossRefPubMedGoogle Scholar
  4. 4.
    Merrifield RB (1984) Solid phase synthesis. Science 232:341–347CrossRefGoogle Scholar
  5. 5.
    Raines RT (2004) Active site of ribonuclease A. In: Zenkova MA (ed) Artificial nucleases. Springer, Heidelberg, pp 19–32CrossRefGoogle Scholar
  6. 6.
    Findlay D, Herries DG, Mathias AP, Rabin BR, Ross CA (1961) The active site and mechanism of action of bovine pancreatic ribonuclease. Nature (Lond) 190:781–784CrossRefGoogle Scholar
  7. 7.
    Thompson JE, Raines RT (1994) Value of general acid–base catalysis to ribonuclease A. J Am Chem Soc 116:5467–5468CrossRefPubMedGoogle Scholar
  8. 8.
    Park C, Schultz LW, Raines RT (2001) Contribution of the active site histidine residues of ribonuclease A to nucleic acid binding. Biochemistry 40:4949–4956CrossRefPubMedGoogle Scholar
  9. 9.
    Messmore JM, Fuchs DN, Raines RT (1995) Ribonuclease A: revealing structure–function relationships with semisynthesis. J Am Chem Soc 117:8057–8060CrossRefPubMedGoogle Scholar
  10. 10.
    Messmore JM, Raines RT (2000) Pentavalent organo-vanadates as transition state analogues for phosphoryl transfer reactions. J Am Chem Soc 122:9911–9916CrossRefPubMedGoogle Scholar
  11. 11.
    Usher DA, Erenrich ES, Eckstein F (1972) Geometry of the first step in the action of ribonuclease-A. Proc Natl Acad Sci USA 69:115–118CrossRefPubMedGoogle Scholar
  12. 12.
    Park C, Raines RT (2001) Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J Am Chem Soc 123:11472–11479CrossRefPubMedGoogle Scholar
  13. 13.
    Park C, Raines RT (2002) Catalysis by ribonuclease A is limited by the rate of substrate association. Biochemistry 42:3509–3518CrossRefGoogle Scholar
  14. 14.
    Cuchillo CM, Parés X, Guasch A, Barman T, Travers F, Nogués MV (1993) The role of 2′,3′-cyclic phosphodiesters in the bovine pancreatic ribonuclease A catalysed cleavage of RNA: intermediates or products? FEBS Lett 333:207–210CrossRefPubMedGoogle Scholar
  15. 15.
    Thompson JE, Venegas FD, Raines RT (1994) Energetics of catalysis by ribonucleases: fate of the 2′,3′-cyclic phosphodiester intermediate. Biochemistry 33:7408–7414CrossRefPubMedGoogle Scholar
  16. 16.
    Dyer KD, Rosenberg HF (2006) The RNase A superfamily: generation of diversity and innate host defense. Mol Divers 10:585–597CrossRefPubMedGoogle Scholar
  17. 17.
    Barnard EA (1969) Biological function of pancreatic ribonuclease. Nature (Lond) 221:340–344CrossRefGoogle Scholar
  18. 18.
    Barnard EA (1969) Ribonucleases. Annu Rev Biochem 38:677–732CrossRefPubMedGoogle Scholar
  19. 19.
    Ledoux L, Baltus E (1954) Action de la ribonucléase sur les cellules du carcinome d’Ehrlich. Experientia (Basel) 10:500–501CrossRefGoogle Scholar
  20. 20.
    Ledoux L (1955) Action of ribonuclease on two solid tumours in vivo. Nature (Lond) 176:36–37CrossRefGoogle Scholar
  21. 21.
    Ledoux L (1955) Action of ribonuclease on certain ascites tumours. Nature (Lond) 175:258–259CrossRefGoogle Scholar
  22. 22.
    Alexsandrowicz J (1958) Intracutaneous ribonuclease in chronic myelocytic leukaemia. Lancet 2:420CrossRefGoogle Scholar
  23. 23.
    D’Alessio G, Di Donato A, Parente A, Piccoli R (1991) Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci 16:106–108Google Scholar
  24. 24.
    Lu CX, Nan KJ, Lei Y (2008) Agents from amphibians with anticancer properties. Anticancer Drugs 19:931–939CrossRefPubMedGoogle Scholar
  25. 25.
    Lee JE, Raines RT (2008) Ribonucleases as novel chemotherapeutics: the ranpirnase example. BioDrugs 22:53–58CrossRefPubMedGoogle Scholar
  26. 26.
    Rybak S, Shogen K (2008) Conquering cancer resistance. Drug Discov Dev 11:18–24Google Scholar
  27. 27.
    Lee JE, Raines RT (2003) Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry 42:11443–11450CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J-S, Souček J, Matoušek J, Raines RT (1995) Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem J 308:547–550PubMedGoogle Scholar
  29. 29.
    Leland PA, Raines RT (2001) Cancer chemotherapy—ribonucleases to the rescue. Chem Biol 8:405–413CrossRefPubMedGoogle Scholar
  30. 30.
    Matoušek J, Souček J, Slavík T, Tománek M, Lee JE, Raines RT (2003) Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease. Comp Biochem Physiol 136C:343–356Google Scholar
  31. 31.
    Vasandani VM, Wu Y-N, Mikulski SM, Youle RJ, Sung C (1996) Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Cancer Res 56:4180–4186PubMedGoogle Scholar
  32. 32.
    Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374CrossRefPubMedGoogle Scholar
  33. 33.
    Turcotte RF, Raines RT (2008) Interaction of onconase with the human ribonuclease inhibitor protein. Biochem Biophys Res Commun 377:512–514CrossRefPubMedGoogle Scholar
  34. 34.
    Haigis MC, Haag ES, Raines RT (2002) Evolution of ribonuclease inhibitor protein by exon duplication. Mol Biol Evol 19:960–964CrossRefGoogle Scholar
  35. 35.
    Haigis MC, Kurten EL, Raines RT (2003) Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 31:1024–1032CrossRefPubMedGoogle Scholar
  36. 36.
    Leland PA, Schultz LW, Kim B-M, Raines RT (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci USA 95:10407–10412CrossRefGoogle Scholar
  37. 37.
    Johnson RJ, McCoy JG, Bingman CA, Phillips GN Jr, Raines RT (2007) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 367:434–449CrossRefGoogle Scholar
  38. 38.
    Kobe B, Deisenhofer J (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature (Lond) 374:183–186CrossRefGoogle Scholar
  39. 39.
    Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT (2005) Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 354:41–54CrossRefPubMedGoogle Scholar
  40. 40.
    Lee JE, Raines RT (2005) Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry 44:15760–15767CrossRefPubMedGoogle Scholar
  41. 41.
    Rutkoski TJ, Raines RT (2008) Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr Pharm Biotechnol 9:185–189CrossRefPubMedGoogle Scholar
  42. 42.
    Rutkoski TJ, Kink JA, Strong LE, Schilling CI, Raines RT (2010) Antitumor activity of ­ribonuclease multimers created by site-specific covalent tethering. Bioconjugate Chem 21:1691–1702CrossRefGoogle Scholar
  43. 43.
    Rutkoski TJ, Kink JA, Strong LE, Raines RT (2011) Site-specific PEGylation endows a mammalian ribonuclease with antitumor activity. Cancer Biol Ther 12:208–214CrossRefPubMedGoogle Scholar
  44. 44.
    Haigis MC, Raines RT (2003) Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J Cell Sci 116:313–324CrossRefPubMedGoogle Scholar
  45. 45.
    Chao T-Y, Lavis LD, Raines RT (2010) Cellular uptake of ribonuclease A relies on anionic glycans. Biochemistry 49:10666–10673CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson RJ, Chao T-Y, Lavis LD, Raines RT (2007) Cytotoxic ribonucleases: the dichotomy of Coulombic forces. Biochemistry 46:10308–10316CrossRefPubMedGoogle Scholar
  47. 47.
    Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155CrossRefPubMedGoogle Scholar
  48. 48.
    Chandran SS, Dickson KA, Raines RT (2005) Latent fluorophore based on the trimethyl lock. J Am Chem Soc 127:1652–1653CrossRefPubMedGoogle Scholar
  49. 49.
    Lavis LD, Chao T-Y, Raines RT (2006) Fluorogenic label for biomolecular imaging. ACS Chem Biol 1:252–260CrossRefPubMedGoogle Scholar
  50. 50.
    Lavis LD, Chao T-Y, Raines RT (2006) Latent blue and red fluorophores based on the trimethyl lock. Chembiochem 7:1151–1154CrossRefPubMedGoogle Scholar
  51. 51.
    Yatzeck MM, Lavis LD, Chao T-Y, Chandran SS, Raines RT (2008) A highly sensitive fluorogenic probe for cytochrome P450 activity in live cells. Bioorg Med Chem Lett 18:5864–5866CrossRefPubMedGoogle Scholar
  52. 52.
    Plainkum P, Fuchs SM, Wiyakrutta S, Raines RT (2003) Creation of a zymogen. Nat Struct Biol 10:115–119CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson RJ, Lin SR, Raines RT (2006) A ribonuclease zymogen activated by the NS3 protease of the hepatitis C virus. FEBS J 273:5457–5465CrossRefPubMedGoogle Scholar
  54. 54.
    Turcotte RF, Raines RT (2008) Design and characterization of an HIV-specific ribonuclease zymogen. AIDS Res Hum Retroviruses 24:1357–1363CrossRefPubMedGoogle Scholar
  55. 55.
    Fontecilla-Camps JC, de Llorens R, le Du MH, Cuchillo CM (1994) Crystal structure of ribonuclease A·d(ApTpApApG) complex. J Biol Chem 269:21526–21531PubMedGoogle Scholar
  56. 56.
    Lee JE, Bae E, Bingman CA, Phillips GN Jr, Raines RT (2008) Structural basis for catalysis by onconase. J Mol Biol 374:165–177CrossRefGoogle Scholar
  57. 57.
    Leland PA, Staniszewski KE, Kim B-M, Raines RT (2001) Endowing human pancreatic ribonuclease with toxicity for cancer cells. J Biol Chem 276:43095–43102CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations