Tailored Synthetic Surfaces to Control Human Pluripotent Stem Cell Self-Renewal

  • Laura L. Kiessling
Conference paper


The ability to grow human cells ex vivo is the basis for remarkable advances in fields ranging from cell biology to medicine. From Gey’s demonstration that human cancer cells can be cultured in vitro [1] to Thomson’s derivation of human embryonic stem (hES) cells [2] to Yamanaka’s reprogramming of fibroblasts to induced pluripotent stem (iPS) cells [3], new opportunities have emerged with access to renewable supplies of human cells. Human pluripotent stem cells (hPS cells, which consist of hES and iPS cells) have the notable capacity to both self-renew indefinitely and differentiate into many different cell types [2–4]. These attributes of hPS cells have engendered excitement because of the cell’s potential applications. For example, they could advance regenerative medicine by serving as renewable sources of specialized human cell types for repair of damaged tissue or organs. In addition, they could be used in drug discovery to identify drug leads and to evaluate lead metabolism and toxicity [5, 6]. Moreover, patient-derived iPS cell lines provide the means to understand disease progression and devise new therapies [7]. Finally, the study of hPS cells can reveal the molecular mechanisms underlying human development.


Array Element Dermatan Sulfate Human Pluripotent Stem Cell Alkane Thiol Synthetic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gey GO, Coffman WD, Kubicek MT (1952) Tissue culture studies of the proliferative capacity of human cervical carcinoma and normal epithelium. Cancer Res 12:264–265Google Scholar
  2. 2.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019PubMedCrossRefGoogle Scholar
  4. 4.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi:10.1126/science.1151526PubMedCrossRefGoogle Scholar
  5. 5.
    Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7:131–142. doi:10.1038/nrd2403PubMedCrossRefGoogle Scholar
  6. 6.
    Teo AKK, Vallier L (2010) Emerging use of stem cells in regenerative medicine. Biochem J 428:11–23. doi:10.1042/bj20100102PubMedCrossRefGoogle Scholar
  7. 7.
    Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661. doi:10.1038/clpt.2011.38PubMedCrossRefGoogle Scholar
  8. 8.
    Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514PubMedCrossRefGoogle Scholar
  9. 9.
    Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646. doi:10.1038/nmeth902PubMedCrossRefGoogle Scholar
  10. 10.
    Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912. doi:10.1073/pnas.0602280103PubMedCrossRefGoogle Scholar
  11. 11.
    Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119. doi:10.1182/blood-2007-03-082586PubMedCrossRefGoogle Scholar
  12. 12.
    Xu CH, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974PubMedCrossRefGoogle Scholar
  13. 13.
    Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386. doi:10.1016/j.semcancer.2005.05.004PubMedCrossRefGoogle Scholar
  14. 14.
    Villa-Diaz LG, Nandivada H, Ding J, Nogueira-De-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583. doi:10.1038/nbt.1631PubMedCrossRefGoogle Scholar
  15. 15.
    Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31: 9135–9144. doi:10.1016/j.biomaterials.2010.08.007PubMedCrossRefGoogle Scholar
  16. 16.
    Irwin EF, Gupta R, Dashti DC, Healy KE (2011) Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32:6912–6919. doi:10.1016/j.biomaterials.2011.05.058PubMedCrossRefGoogle Scholar
  17. 17.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho S-W, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778. doi:10.1038/nmat2812PubMedCrossRefGoogle Scholar
  18. 18.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature (Lond) 309:30–33CrossRefGoogle Scholar
  19. 19.
    Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7:989–994. doi:10.1038/nmeth.1532PubMedCrossRefGoogle Scholar
  20. 20.
    Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1–5. doi:10.1002/jbm.a.30732PubMedGoogle Scholar
  21. 21.
    Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E (2010) Synthetic surfaces for human embryonic stem cell culture. J Biotechnol. doi:10.1016/j.jbiotec.2010.01.016Google Scholar
  22. 22.
    Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28:606–610. doi:10.1038/nbt.1629PubMedCrossRefGoogle Scholar
  23. 23.
    Orner BP, Derda R, Lewis RL, Thomson JA, Kiessling LL (2004) Arrays for the combinatorial exploration of cell adhesion. J Am Chem Soc 126:10808–10809. doi:10.1021/ja0474291PubMedCrossRefGoogle Scholar
  24. 24.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169PubMedCrossRefGoogle Scholar
  25. 25.
    Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL (2007) Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2:347–355. doi:10.1021/cb700032uPubMedCrossRefGoogle Scholar
  26. 26.
    Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608CrossRefGoogle Scholar
  27. 27.
    Derda R, Wherritt DJ, Kiessling LL (2007) Solid-phase synthesis of alkanethiols for the preparation of self-assembled monolayers. Langmuir ACS J Surfaces Colloids 23:11164–11167. doi:10.1021/la701386vCrossRefGoogle Scholar
  28. 28.
    Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL (2010) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc. doi:10.1021/ja906089gGoogle Scholar
  29. 29.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187. doi:10.1038/nbt1177PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686. doi:10.1038/nbt1310PubMedCrossRefGoogle Scholar
  31. 31.
    Berg JM (2011) Fiscal Year 2012 Budget Request, National Institutes of Health. In: Health NI (ed) NIGMS Director’s Statements to Appropriations Subcommittees, National Institute of General Medical SciencesGoogle Scholar
  32. 32.
    Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and Sulfated Glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., (eds.). Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press;pp. 229–248Google Scholar
  33. 33.
    Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, Nishi A, Hsieh-Wilson, LC (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2(9):467–473. doi: 10.1038/nchembio810. PubMed PMID: 16878128Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Departments of Chemistry and BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations