Advertisement

High-Throughput Screening for Small Molecule Modulators of FGFR2-IIIb Pre-mRNA Splicing

  • Erik S. Anderson
  • Peter Stoilov
  • Robert Damoiseaux
  • Douglas L. Black
Conference paper

Abstract

Pre-mRNA splicing is the process in which a ribonucleoprotein complex called the spliceosome removes introns from a primary transcript and ligates its exons together [1]. The spliced exons produce an mRNA containing the mature protein coding sequence. The splicing process is remarkably consistent in its choice of splice sites, and these choices can be regulated to allow different mRNA sequences to arise from the same pre-mRNA transcript, in a process called alternative splicing. In this way, genes often yield multiple mRNAs and encoded proteins to increase diversity of eukaryotic proteomes. Alternative splicing patterns often show developmental and tissue-specific expression. Misregulation of splicing is seen in human disease and can be a direct cause of pathology [2]. Splicing regulatory mechanisms thus present a promising target for therapeutic intervention.

Keywords

Splice Factor Dual Fluorescence Reporter Cell Line Exon Inclusion Cell Signaling Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336. doi:10.1146/annurev.biochem.72.121801.161720CrossRefPubMedGoogle Scholar
  2. 2.
    Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8(10):749–761. doi:10.1038/nrg2164CrossRefPubMedGoogle Scholar
  3. 3.
    Caffrey TM, Wade-Martins R (2007) Functional MAPT haplotypes: bridging the gap between genotype and neuropathology. Neurobiol Dis 27(1):1–10. doi:10.1016/j.nbd.2007.04.006CrossRefPubMedGoogle Scholar
  4. 4.
    Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13(8):4513–4522PubMedGoogle Scholar
  5. 5.
    Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA (1997) Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15(25):3059–3065. doi:10.1038/sj.onc.1201498CrossRefPubMedGoogle Scholar
  6. 6.
    Yasumoto H, Matsubara A, Mutaguchi K, Usui T, McKeehan WL (2004) Restoration of fibroblast growth factor receptor2 suppresses growth and tumorigenicity of malignant human prostate carcinoma PC-3 cells. Prostate 61(3):236–242. doi:10.1002/pros.20093CrossRefPubMedGoogle Scholar
  7. 7.
    Del Gatto-Konczak F, Olive M, Gesnel MC, Breathnach R (1999) hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 19(1):251–260PubMedGoogle Scholar
  8. 8.
    Carstens RP, Wagner EJ, Garcia-Blanco MA (2000) An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 20(19):7388–7400CrossRefPubMedGoogle Scholar
  9. 9.
    Takeuchi A, Hosokawa M, Nojima T, Hagiwara M (2010) Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS One 5(6):e10946. doi:10.1371/journal.pone.0010946CrossRefPubMedGoogle Scholar
  10. 10.
    Del Gatto-Konczak F, Bourgeois CF, Le Guiner C, Kister L, Gesnel MC, Stevenin J, Breathnach R (2000) The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site. Mol Cell Biol 20(17):6287–6299CrossRefPubMedGoogle Scholar
  11. 11.
    Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP (2009) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33(5):591–601. doi:10.1016/j.molcel.2009.01.025CrossRefPubMedGoogle Scholar
  12. 12.
    Chen X, Huang J, Li J, Han Y, Wu K, Xu P (2004) Tra2betal regulates P19 neuronal differentiation and the splicing of FGF-2R and GluR-B minigenes. Cell Biol Int 28(11):791–799. doi:10.1016/j.cellbi.2004.07.009CrossRefPubMedGoogle Scholar
  13. 13.
    Hovhannisyan RH, Carstens RP (2007) Heterogeneous ribonucleoprotein m is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol Chem 282(50):36265–36274. doi:10.1074/jbc.M704188200CrossRefPubMedGoogle Scholar
  14. 14.
    Baraniak AP, Chen JR, Garcia-Blanco MA (2006) Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol 26(4):1209–1222. doi:10.1128/MCB.26.4.1209-1222.2006CrossRefPubMedGoogle Scholar
  15. 15.
    Mauger DM, Lin C, Garcia-Blanco MA (2008) hnRNP H and hnRNP F complex with Fox2 to silence fibroblast growth factor receptor 2 exon IIIc. Mol Cell Biol 28(17):5403–5419. doi:10.1128/MCB.00739-08CrossRefPubMedGoogle Scholar
  16. 16.
    Bonano VI, Oltean S, Brazas RM, Garcia-Blanco MA (2006) Imaging the alternative silencing of FGFR2 exon IIIb in vivo. RNA 12(12):2073–2079. doi:10.1261/rna.248506CrossRefPubMedGoogle Scholar
  17. 17.
    Newman EA, Muh SJ, Hovhannisyan RH, Warzecha CC, Jones RB, McKeehan WL, Carstens RP (2006) Identification of RNA-binding proteins that regulate FGFR2 splicing through the use of sensitive and specific dual color fluorescence minigene assays. RNA 12(6):1129–1141. doi:10.1261/rna.34906CrossRefPubMedGoogle Scholar
  18. 18.
    O’Brien K, Matlin AJ, Lowell AM, Moore MJ (2008) The biflavonoid isoginkgetin is a ­general inhibitor of pre-mRNA splicing. J Biol Chem 283(48):33147–33154. doi:10.1074/jbc.M805556200CrossRefPubMedGoogle Scholar
  19. 19.
    Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D, Nguyen CH, Jeanteur P, Tazi J (2005) Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci USA 102(24):8764–8769. doi:10.1073/pnas.0409829102CrossRefPubMedGoogle Scholar
  20. 20.
    Stoilov P, Lin CH, Damoiseaux R, Nikolic J, Black DL (2008) A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc Natl Acad Sci USA 105(32):11218–11223. doi:10.1073/pnas.0801661105CrossRefPubMedGoogle Scholar
  21. 21.
    Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3(9):570–575. doi:10.1038/nchembio.2007.16CrossRefPubMedGoogle Scholar
  22. 22.
    Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H, Tani T, Horinouchi S, Yoshida M (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3(9):576–583. doi:10.1038/nchembio.2007.18CrossRefPubMedGoogle Scholar
  23. 23.
    Roybal GA, Jurica MS (2010) Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 38(19):6664–6672. doi:10.1093/nar/gkq494CrossRefPubMedGoogle Scholar
  24. 24.
    Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black DL (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21(13):1636–1652. doi:10.1101/gad.1558107CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Erik S. Anderson
    • 1
    • 2
  • Peter Stoilov
    • 3
  • Robert Damoiseaux
    • 4
  • Douglas L. Black
    • 5
    • 6
  1. 1.Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA
  2. 2.The David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of BiochemistryWest Virginia UniversityMorgantownUSA
  4. 4.Molecular Screening Shared ResourceUniversity of California, 2145 California NanoSystems Institute (CNSI)Los AngelesUSA
  5. 5.Howard Hughes Medical InstituteUniversity of CaliforniaLos AngelesUSA
  6. 6.Department of Microbiology, Immunology and Molecular GeneticsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations