Advertisement

Chemistry of Mycolactones, the Causative Toxins of Buruli Ulcer

  • Yoshito Kishi
Conference paper

Abstract

Buruli ulcer is a severe and devastating skin disease caused by Mycobacterium ulceransinfection, yet it is one of the most neglected diseases (Fig. 1) (for recent reviews on Buruli ulcer, see [1–3]). Among the diseases caused by mycobacterial infection, Buruli ulcer occurs less frequently than tuberculosis (Mycobacterium tuberculosis) and leprosy (Mycobacterium leprae). However, it is noted that the occurrence of Buruli ulcer is increasing and spreading in tropical countries, and that the incidence of the disease may exceed that of leprosy and tuberculosis in highly affected areas. Infection with M. ulcerans, probably carried by aquatic insects and mosquitoes [4, 5], results in painless necrotic lesions that, if untreated, can extend to 15% of a patient’s skin surface. Surgical intervention has been the only practical curative therapy for Buruli ulcer.

Keywords

Buruli Ulcer Pentadecanoic Acid Fish Pathogen Pathogen Mycobacterium Mycobacterium Marinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to the National Institutes of Health (CA 22215) and Eisai USA Foundation for generous financial support.

References

  1. 1.
    Asiedu K, Scherpbier R, Raviglione M (eds) (2000) Buruli ulcer: Mycobacterium ulceransinfection. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Johnson PDR, Stinear T, Small PLC, Plushke G, Merritt RW, Portaels F, Huygen K, Hayman JA, Asiedu K (2005) Buruli ulcer (M. ulceransinfection): new insights, new hope for disease control. PLoS Med 2:282–286CrossRefGoogle Scholar
  3. 3.
    Demangel C, Stinear TP, Cole ST (2009) Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev 7:50–60CrossRefGoogle Scholar
  4. 4.
    Marsollier L, Robert R, Aubry J, Saint André J-P, Kouakou H, Legras P, Manceau A-L, Mahaza C, Carbonnelle B (2002) Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68:4623–4628PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson PDR, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, Brown L, Jenkin GA, Fyfe JAM (2007) Mycobacterium ulceransin mosquitoes captured during outbreak of Buruli Ulcer, Southeastern Australia. Emerg Infect Dis 13:1653–1660PubMedCrossRefGoogle Scholar
  6. 6.
    George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PLC (1999) Mycolactone: a polyketide toxin from Mycobacterium ulceransrequired for virulence. Science 283:854–857PubMedCrossRefGoogle Scholar
  7. 7.
    George KM, Pascopella L, Welty DM, Small PLC (2000) A Mycobacterium ulceranstoxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Infect Immun 68:877–883PubMedCrossRefGoogle Scholar
  8. 8.
    Hong H, Demangel C, Pidot SJ, Leadlay PF, Stinear T (2008) Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep 25:447–454PubMedCrossRefGoogle Scholar
  9. 9.
    Kishi Y (2011) Chemistry of mycolactones, the causative toxins of Buruli ulcer. Proc Natl Acad Sci USA 108:6703–6708PubMedCrossRefGoogle Scholar
  10. 10.
    Gunawardana G, Chatterjee D, George KM, Brennan P, Whittern D, Small PLC (1999) Characterization of novel macrolide toxins, mycolactones A and B, from a human pathogen, Mycobacterium ulcerans. J Am Chem Soc 121:6092–6093CrossRefGoogle Scholar
  11. 11.
    Kobayashi Y, Lee J, Tezuka K, Kishi Y (1999) Toward creation of a universal NMR database for the stereochemical assignment of acyclic compounds: the case of two contiguous propionate units. Org Lett 1:2177–2180PubMedCrossRefGoogle Scholar
  12. 12.
    Seike F, Ghosh I, Kishi Y (2006) Attempts to assemble universal NMR database without synthesis of NMR database compounds. Org Lett 8:3861–3864PubMedCrossRefGoogle Scholar
  13. 13.
    Benewoitz AB, Fidanze S, Small PLC, Kishi Y (2001) Stereochemistry of the core structure of the mycolactones. J Am Chem Soc 123:5128–5129CrossRefGoogle Scholar
  14. 14.
    Fidanze S, Song F, Szlosek-Pinaud M, Small PLC, Kishi Y (2001) Complete structure of the mycolactones. J Am Chem Soc 123:10117–10118PubMedCrossRefGoogle Scholar
  15. 15.
    Hong H, Stinear T, Porter J, Demangel C, Leadlay P (2007) A novel mycolactone toxin obtained by biosynthetic engineering. Chembiochem 8:2043–2047PubMedCrossRefGoogle Scholar
  16. 16.
    Kim H-J, Kishi Y (2008) Total synthesis and stereochemistry of mycolactone F. J Am Chem Soc 130:1842–1844PubMedCrossRefGoogle Scholar
  17. 17.
    Kim H-J, Jackson KL, Kishi Y, Williamson HR, Mosi L, Small PLC (2009) Heterogeneity in the stereochemistry of mycolactones isolated from M. marinum: toxins produced by fresh vs.saltwater fish pathogens. Chem Commun:7402–7404Google Scholar
  18. 18.
    Yip MJ, Porter JL, Fyfe JAM, Lavender CJ, Portaels F, Rhodes M, Kator H, Colorni A, Jenkin GA, Stinear T (2007) Evolution of Mycobacterium ulceransand other mycolactone-producing mycobacteria from a common Mycobacterium marinumprogenitor. J Bacteriol 189:2021–2029PubMedCrossRefGoogle Scholar
  19. 19.
    Judd TC, Bischoff A, Kishi Y, Adusumilli S, Small PLC (2004) Structure determination of mycolactone C via total synthesis. Org Lett 6:4901–4904PubMedCrossRefGoogle Scholar
  20. 20.
    Aubry S, Lee RE, Mahrous EA, Small PLC, Beachboard D, Kishi Y (2008) Synthesis and structure of mycolactone E isolated from frog mycobacterium. Org Lett 10:5385–5388PubMedCrossRefGoogle Scholar
  21. 21.
    Spangenberg T, Aubry S, Kishi Y (2010) Synthesis and structure assignment of the minor metabolite arising from the frog pathogen Mycobacterium liflandii. Tetrahedron Lett 51:1782–1785PubMedCrossRefGoogle Scholar
  22. 22.
    Song F, Fidanze S, Benowitz AB, Kishi Y (2002) Total synthesis of the mycolactones. Org Lett 4:647–650PubMedCrossRefGoogle Scholar
  23. 23.
    Song F, Fidanze S, Benowitz AB, Kishi Y (2007) Total synthesis of mycolactones A and B. Tetrahedron 63:5739–5753PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson KL, Li W, Chen C-L, Kishi Y (2010) Scalable and efficient synthesis of the mycolactone core. Tetrahedron 66:2263–2272PubMedCrossRefGoogle Scholar
  25. 25.
    Alexander MD, Fontaine SD, La Clair JJ, DiPasquale AG, Rheingold AL, Burkart MD (2006) Synthesis of the mycolactone core by ring-closing metathesis. Chem Commun:4602–4604Google Scholar
  26. 26.
    Feyen F, Jantsch A, Altmann K-H (2007) Synthetic studies on mycolactones: synthesis of the mycolactone core structure through ring-closing olefin metathesis. Synlett:415–418Google Scholar
  27. 27.
    van Summeren RP, Feringa BL, Minnaard AJ (2005) New approaches towards the synthesis of the side-chain of mycolactones A and B. Org Biomol Chem 3:2524–2533PubMedCrossRefGoogle Scholar
  28. 28.
    Yin N, Wang G, Qian M, Negishi E (2006) Stereoselective synthesis of the side chains of mycolactones A and B featuring stepwise double substitutions of 1,1-dibromo-1-alkenes. Angew Chem Int Ed 45:2916–2920CrossRefGoogle Scholar
  29. 29.
    Wang G, Yin N, Negishi E (2011) Highly stereoselective total synthesis of fully hydroxyl-protected mycolactones A and B and their stereoisomerization upon deprotection. Chem Eur J 17:4118–4130PubMedCrossRefGoogle Scholar
  30. 30.
    Spangenberg T, Kishi Y (2010) Highly sensitive, operationally simple, cost/time effective detection of the mycolactones from the human pathogen Mycobacterium ulcerans. Chem Commun 46:1410–1412CrossRefGoogle Scholar
  31. 31.
    Snyder DS, Small PLC (2003) Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans. Microb Pathog 34:91–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations