Linking Remote Sensing and In Situ Ecosystem/Biodiversity Observations by “Satellite Ecology”

In Situ/Remote Sensing Integration Working Group of J-BON
  • Hiroyuki Muraoka
  • Reiichiro Ishii
  • Shin Nagai
  • Rikie Suzuki
  • Takeshi Motohka
  • Hibiki M. Noda
  • Mitsuru Hirota
  • Kenlo N. Nasahara
  • Hiroyuki Oguma
  • Kanako Muramatsu
Part of the Ecological Research Monographs book series (ECOLOGICAL)


Climate change and human activity (land use change and management) are the major drivers of changes in biodiversity, which ranges from the genetic composition of a given population to the structure and functions in an ecosystem and to the ecosystems in a landscape. The structural and functional diversity of an ecosystem on a landscape or regional scale could have a serious impact on the regional to global environmental sustainability and ecosystem services. Also, those ecosystem properties could have feedback effects on the population, individual, and genetic levels (e.g., Schulze and Mooney 1994). These cross-hierarchy consequences strongly suggest the need for understanding the relations between ecosystem properties and their internal and external drivers (Noss 1990; Scholes et al. 2008).


Normalize Difference Vegetation Index Synthetic Aperture Radar Ecosystem Structure Enhance Vegetation Index Microwave Remote Sensing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The activities of the in situ/remote sensing integration working group are supported by many colleagues, who have contributed to the research networks, such as JaLTER/ILTER-EAP, Monitoring site 1000 (Ministry of Environment, Japan), JapanFlux, and J-BON/AP-BON. Research activities by the authors introduced in this article have been partly supported by Global Environment Research Fund of the Ministry of the Environment Japan (S-1: Integrated Study for Terrestrial Carbon Management of Asia in the twenty-first Century Based on Scientific Advancement), JSPS 21st century COE program “Satellite Ecology” and JSPS-NRF-NSFC A3 Foresight Program at Gifu University, JAXA GCOM-C project under contract 102: “Development of integrative information of the terrestrial ecosystem” (PI: Kenlo Nishida Nasahara). And the research activity is also supported by the Environment Research & Technology Development Fund (D-0909 and S-9) of the Ministry of Environment Japan.

Glossary of Research Networks


Asian CO2 flux network (


Biodiversity Observation Network (


The Center for Tropical Forest Science (


Chinese Ecosystem Research Network (


International Long Term Ecological Research network (


Japan Long Term Ecological Research network (


Japan CO2 flux network (


Korea Long-Term Ecological Research network (


Phenological Eyes Network (


Tropical Ecology Assessment & Monitoring Network (


  1. Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977CrossRefGoogle Scholar
  2. Berkes F, Colding J, Folke C (2008) Navigating social-ecological systems. Cambridge University Press, CambridgeGoogle Scholar
  3. Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M, Bontemps S, Leroy M, Achard F, Herold M, Ranera F, Arino O (2008) GLOBCOVER products description and validation report, MEDIAS-France, Toulouse, FranceGoogle Scholar
  4. Chapin FS III, Matson PA, Money HA (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  5. Chapin FSIII, Sala OE, Burke IC, Grime JP, Hoopwer DU, Lauenroth WK, Lombard A, Mooney HA, Mosier AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998) Ecosystem consequences of changing biodiversity. BioScience 48:45–52CrossRefGoogle Scholar
  6. Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416:427–430PubMedCrossRefGoogle Scholar
  7. Group on Earth Observations (2008) GEO BON implementation overview.
  8. Hirota M, Zhang P, Gu S, Shen H, Kuriyama T, Li Y, Tang Y (2010) Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness. J Plant Res 123:531–542PubMedCrossRefGoogle Scholar
  9. Ide R, Oguma H (2010) Use of digital cameras for phenological observations. Ecol Inform. doi: 10.1016/j.ecoinf.2010.07.002
  10. Kim J, Le D, Hong J, Kang S, Kim SJ, Moon SK, Kim JH, Son Y, Lee J, Kim S, Woo N, Kim K, Lee B, Lee BL, Kim S (2006) HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecol Res 21:881–889CrossRefGoogle Scholar
  11. Labiosa RG, Arrigo KR, Genin A, Monismith SG, van Dijken G (2003) The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol Oceanogr 48:2355–2368CrossRefGoogle Scholar
  12. Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob Change Biol 13:2329–2340CrossRefGoogle Scholar
  13. Loreau M, Naeem S, Inchausti P (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, OxfordGoogle Scholar
  14. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330CrossRefGoogle Scholar
  15. Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20PubMedCrossRefGoogle Scholar
  16. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  17. Nagai S, Ichii K, Morimoto H (2007) Interannual variations in vegetation activities and climate variability caused by ENSO in tropical rainforests. Int J Remote Sens 28:1285–1297CrossRefGoogle Scholar
  18. Nagai S, Nasahara KN, Muraoka H, Akiyama T, Tsuchida S (2010) Field experiments to test the use of the normalized difference vegetation index for phenology detection. Agric Forest Meteorol 150:152–160CrossRefGoogle Scholar
  19. Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric Forest Meteorol 148:1136–1146CrossRefGoogle Scholar
  20. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563PubMedCrossRefGoogle Scholar
  21. Nishida K (2007) Phenological Eyes Network (PEN)—A validation network for remote sensing of the terrestrial ecosystems. AsiaFlux Newslett (21):9–13 (available online at
  22. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364CrossRefGoogle Scholar
  23. Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Change Biol 15:1015–1024CrossRefGoogle Scholar
  24. Peters DPC, Bestelmeyer BT, Turner MG (2007) Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–796CrossRefGoogle Scholar
  25. Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric Forest Meteorol 134:4–16CrossRefGoogle Scholar
  26. Sakai H, Suzuki R, Kondoh A (2008) Recent signal of vegetation change in Siberia using satellite data. J Jpn Soc Hydrol Water Resour 21:50–56 (in Japanese)CrossRefGoogle Scholar
  27. Sasai T, Ichii K, Yamaguchi Y, Nemani R (2005) Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approach using satellite data” (BEAMS). J Geophys Res 110:G02014. doi: 10.1029/2005JG000045 Google Scholar
  28. Scherer-Lorenzen M, Körner Ch, Schulze E-D (2005) Forest diversity and function. Springer, BerlinCrossRefGoogle Scholar
  29. Scholes RJ, Mace GM, Turner W, Geller GN, Jurgens N, Larigayuderie A, Muchoner D, Walther BA, Mooney HA (2008) Toward a global biodiversity observing system. Science 321:1044–1045PubMedCrossRefGoogle Scholar
  30. Schulze E-D, Mooney HA (1994) Biodiversity and ecosystem function. Springer, BerlinGoogle Scholar
  31. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–705CrossRefGoogle Scholar
  32. Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on shuttle radar topography mission elevation data, ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia. Remote Sens Environ 112:2131–2144CrossRefGoogle Scholar
  33. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910PubMedCrossRefGoogle Scholar
  34. Strassburg BBN, Kelly A, Balmford A, Davies RG, Gibbs HK, Lovett A, Miles L, Orme CDL, Price J, Turner RK, Rodrigues ASL (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv Lett 3:98–105CrossRefGoogle Scholar
  35. Suzuki R, Hiyama T, Asanuma J, Ohata T (2004) Land surface identification near Yakutsk in eastern Siberia using video images taken from a hedgehopping aircraft. Int J Remote Sens 25:4015–4028CrossRefGoogle Scholar
  36. Suzuki R, Ishii R, Kim Y (2009) Above-ground forest biomass estimation by ALOS/PALSAR over boreal forest in Alaska accompanied with ground-based forest survey. In: Proceedings of the 33rd international symposium on remote sensing of environment, Stresa, Italy, 4–8 May 2009Google Scholar
  37. Suzuki R, Masuda K, Dye DG (2007) Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia. Remote Sens Environ 106:387–398CrossRefGoogle Scholar
  38. Tarpley JD, Schneider SR, Money RL (1984) Global vegetation indices from the NOAA-7 meteorological satellite. J Clim Appl Meteorol 23:491–494CrossRefGoogle Scholar
  39. Tateishi R, Bayaer Ghar MA, Al-Bilbisi H, Tsendayush J, Shalaby A, Kasimu A, Hoan NT, Kobayashi T, Alsaaideh B, Rahman Md. M, Tsevengee E, Yamada Y, Kajikawa S (2008) A new global land cover map, GLCNMO. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing 2008, XXXVII, Part B7, pp 1369–1372Google Scholar
  40. Tenhunen JD, Kabat P (1999) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, ChichesterGoogle Scholar
  41. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845PubMedCrossRefGoogle Scholar
  42. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature, doi:  10.1038/nature09329
  43. Tsuchida S, Nishida K, Iwao K, Kawato W, Oguma H, Iwasaki A (2005) Phenological eyes network for validation of remote sensing data. J Remote Sens Soc Jpn 25:282–288 (in Japanese with English summary)Google Scholar
  44. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190PubMedCrossRefGoogle Scholar
  45. Verschuyl JP, Hansen AJ, McWethy DB, Sallabanks R, Hutto R (2008) Is the effect of forest structure on bird diversity modified by forest productivity? Ecol Appl 18:1155–1170PubMedCrossRefGoogle Scholar
  46. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  47. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11:217–234CrossRefGoogle Scholar
  48. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475CrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Hiroyuki Muraoka
    • 1
  • Reiichiro Ishii
    • 2
  • Shin Nagai
    • 2
  • Rikie Suzuki
    • 2
  • Takeshi Motohka
    • 3
  • Hibiki M. Noda
    • 3
  • Mitsuru Hirota
    • 3
  • Kenlo N. Nasahara
    • 3
    • 4
  • Hiroyuki Oguma
    • 5
  • Kanako Muramatsu
    • 6
  1. 1.Institute for Basin Ecosystem StudiesGifu UniversityGifuJapan
  2. 2.Research Institute for Global ChangeJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan
  3. 3.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  4. 4.Ecosystem Observation Research CenterJapan Aerospace Exploration Agency (JAXA)TsukubaJapan
  5. 5.Center for Environmental Measurement and AnalysisNational Institute for Environmental StudiesTsukubaJapan
  6. 6.KYOSEI Science Center for Life and NatureNara Women’s UniversityNaraJapan

Personalised recommendations