DNA Barcoding: A Novel Tool for Observation of Biodiversity

  • Toshihide Kato
  • Utusgi Jinbo
  • Motomi Ito
Part of the Ecological Research Monographs book series (ECOLOGICAL)


Biological specimens, observations, and experimental data are connected with each other through the species name. Thus, species identification is not only a central process to recognize and describe biodiversity, it is a fundamental process to construct biodiversity monitoring databases. Despite the recently increased need for species identification in the field of biodiversity monitoring, ecological research, conservation biology, and political decision-making, the number of taxonomic experts who are able to make such identification is decreasing (Hopkins and Freckleton 2002). This situation requires a rapid, precise species identification system that enables nontaxonomists to identify numerous biological specimens.


Biodiversity Monitoring Molecular Phylogenetic Tree Potential Distribution Range Phylogenetic Diversity Index Nuclear Internal Transcribe Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank N. Utsuki, O. Kurashima, and members of Ito laboratory at the University of Tokyo for reviewing an early version of this chapter. We also thank the Ministry of the Environment, Japan for partial support from the Environment Research and Technology Development Fund of the Ministry of the Environment (D-1008) for our monitoring activity. Part of the work on DNA barcoding in Japan is supported by the GBIF Japan National Node, conducted within the framework of the National BioResource Project (NBRP), initiated and supported by the Japan Science and Technology Agency (JST) and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT).


  1. Armstrong K (2010) DNA barcoding: a new module in New Zealand’s plant biosecurity diagnostic toolbox. EPPO Bull 40:91–100CrossRefGoogle Scholar
  2. Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodiv 4:127–132PubMedCrossRefGoogle Scholar
  3. Busse HJ, Denner EBM, Lubitz W (1996) Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 47:3–38PubMedCrossRefGoogle Scholar
  4. Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54PubMedCrossRefGoogle Scholar
  5. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797PubMedCentralCrossRefGoogle Scholar
  6. Check E (2006) Treasure island: pinning down a model ecosystem. Nature 439:378–379PubMedCrossRefGoogle Scholar
  7. Dexter KG, Pennington TD, Cunningham CW (2010) Using DNA to assess errors in tropical tree identifications: how often are ecologists wrong and when does it matter? Ecol Monogr 80:267–286CrossRefGoogle Scholar
  8. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  9. Faith DP (2002) Quantifying biodiversity: a phylogenetic perspective. Conserv Biol 16:248–252CrossRefGoogle Scholar
  10. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  11. Gellissen G, Michaelis G (1987) Gene transfer: mitochondria to nucleus. Ann NY Acad Sci 503:391–401PubMedCrossRefGoogle Scholar
  12. Gemeinholzer B, Oberprieler C, Bachmann K (2006) Using GenBank data for plant identification: possibilities and limitations using the ITS 1 of Asteraceae species belonging to the tribes Lactuceae and Anthemideae. Taxon 55:173–187CrossRefGoogle Scholar
  13. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc Roy Soc Lond B 270:313–321CrossRefGoogle Scholar
  14. Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Roy Soc Lond B 270(Suppl):S96–S99CrossRefGoogle Scholar
  15. Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249CrossRefGoogle Scholar
  16. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jinbo U, Kato T, Ito M (2011) Current progress in DNA barcoding and future implications for entomology. Entomol Sci 14:107–124CrossRefGoogle Scholar
  18. Kohn MH, Wayne RK (1996) Facts from feces revisited. Trends Ecol Evol 12:223–227CrossRefGoogle Scholar
  19. Magnacca KN, Brown MJF (2010) Mitochondrial heteroplasm and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol Biol 10:174PubMedCentralPubMedCrossRefGoogle Scholar
  20. Meier R, Zhang GY, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the“barcoding gap” and leads to misidentification. Syst Biol 57:809–813PubMedCrossRefGoogle Scholar
  21. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422PubMedCentralPubMedCrossRefGoogle Scholar
  22. Nitta JH (2008) Exploring the utility of three plastid loci for biocoding the filmy ferns (Hymenophyllaceae) of Moorea. DNA Seq 57:725–736Google Scholar
  23. Powers T (2004) Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol 42:367–383PubMedCrossRefGoogle Scholar
  24. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System ( Mol Ecol Notes 7:355–364PubMedCentralPubMedCrossRefGoogle Scholar
  25. Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906PubMedCentralPubMedCrossRefGoogle Scholar
  26. Shneyer VS (2007) On the species-specificity of DNA: fifty years later. Biochemistry (Moscow) 72:1377–1384CrossRefGoogle Scholar
  27. Simmons RB, Weller SJ (2001) Utility and evolution of cytochrome b in insects. Mol Phylogenet Evol 20:196–210PubMedCrossRefGoogle Scholar
  28. Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74CrossRefGoogle Scholar
  29. Valentini A, Taberlet P, Decollato VSG (2008) DNA barcoding for ecologists. Trends Ecol Evol 24:1–8Google Scholar
  30. Vernooy R, Haribabu E, Muller MR, Vogel JH, Hebert PDN, Schindel DE, Shimura J, Singer GAC (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biol 8:e1000417PubMedCentralPubMedCrossRefGoogle Scholar
  31. Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:1–9CrossRefGoogle Scholar
  32. Webb K, Barnes D, Clark M, Bowden D (2006) DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep Sea Res Part II: Topical Stud Oceanogr 53:1053–1060CrossRefGoogle Scholar
  33. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 16:8CrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations