—Description and Understanding of Phenomena—
  • Yoshitsugu Oono
Part of the Springer Series in Synergetics book series (SSSYN)


To model a phenomenon is to give an ultimate expression of what we have understood about the universal features of the phenomenon. After general considerations on models (e.g., how to relate the real world and the world of symbols), abduction is explained. Abduction is an attempt to understand the world phenomenologically relying on the wisdom embodied in ourselves through phylogenetic learning. Successful modeling examples such as phase separation dynamics illustrate abduction. We will reflect on the goodness of models. Good models are possible only for phenomena that allow good phenomenology. Also modeling as a means to devise numerical methods to solve partial differential equations is briefly discussed as a byproduct.


Turing Machine External World Master Curve Malonic Acid Spinodal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen WL, Cuthill JC, Scott-Samuel NE, Baddeley R (2011) Why the leopard got its spots: relating pattern development to ecology in felids. Proc Roy Soc Lond, Ser B: Biol Sci 278:1373-1380CrossRefGoogle Scholar
  2. Bahiana M, Oono Y (1990) Cell dynamical system approach to block copolymers. Phys Rev A 41:6763-6771ADSCrossRefGoogle Scholar
  3. Barbieri M (2002) The organic code―an introduction to semantic biology. Cambridge University PressGoogle Scholar
  4. Bates FS, Wiltzius P (1989) Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer. J Chem Phys 91:3258-3274ADSCrossRefGoogle Scholar
  5. Cahn JW (1965) Phase separation by spinodal decomposition in isotopic systems. J Chem Phys 42:93-99ADSCrossRefGoogle Scholar
  6. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system I. Interfacial free energy. J Chem Phys 28:258-267Google Scholar
  7. Chou YC, Goldburg WI (1981) Angular distribution of light scattered from critically quenched liquid mixtures. Phys Rev A 23:858-864ADSCrossRefGoogle Scholar
  8. Craievich AF, Sanchez JM, Williams CE (1986) Phase separation and dynamical scaling in borate glasses. Phys Rev B 34:2762-2769ADSCrossRefGoogle Scholar
  9. Ezawa H (1998) Quantum mechanics, from its birth to re-examination. In Ezawa H (ed) Physics of 20th century. SaiensuGoogle Scholar
  10. Fisher ME (1983) Scaling, universality and renormalization group theory. Lecture Notes in Physics 186Google Scholar
  11. Gaulin BD, Spooner S, Morii Y (1987) Kinetics of phase separation in Mn0.67 Cu0.33 Phys Rev Lett 59:668-671Google Scholar
  12. Goldstein R, Zimmer M, Oono Y (1992) Modeling mesoscale dynamics of formation of δ-phase in Al3Li alloys. p255 in Chen H, Vasudevan VK (ed) Kinetics of ordering transformations in metals, a symposium held in honor of Professor Jerome B Cohen. TMSGoogle Scholar
  13. Gowers T (ed) (2008) The Princeton companion to mathematics. PrincetonGoogle Scholar
  14. Graham A (1994) The Hox code out on a limb. Curr Biol 4:1135-1137CrossRefGoogle Scholar
  15. Hadamard J (1954) The psychology of invention in the mathematical field. DoverGoogle Scholar
  16. Hemmer PC, Kac M, Uhlenbeck GE (1964) On the van der Waals theory of the liquid-vapor equilibrium, I-III. J Math Phys 4:216-228, 229-247, 5:60-74Google Scholar
  17. Jones CKRT (2008) Is mathematics misapplied to the environment? Notices Amer Math Soc 55:481-484Google Scholar
  18. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, Gonzálex-Gaitán M (2007) Kinetics of morphogen gradient formation. Science 315:521-525ADSCrossRefGoogle Scholar
  19. Kmita M, Tarchini B, Zàkàny J, Logan M, Tabin CJ, Duboule D (2005) Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 435:1113-1116ADSCrossRefGoogle Scholar
  20. Kohn RV, Otto F (2002) Upper bounds on coarsening rates. Comm Math Phys 229:375-395MathSciNetADSMATHCrossRefGoogle Scholar
  21. Kuris AM, et al (2008) Ecosystem energetic implications of parasite and freeliving biomass in three estuaries. Nature 454:515-518ADSCrossRefGoogle Scholar
  22. Lanczos C (1974) The Einstein decade (1905-1915). Paul Elek LtdGoogle Scholar
  23. Lebowitz JL, Marro J, Kalos KH (1982) Dynamical scaling of structure function in quenched binary alloys. Acta Metall 30:297-310CrossRefGoogle Scholar
  24. Lorenz K (1973) Die R¨uckseite des Spiegels. R Piper & Co VerlagGoogle Scholar
  25. Lorenz K (1973) Die acht Todsünden der zivilisierten Menschheit. R Pier & CoGoogle Scholar
  26. Maini PK, Baker RE, Chuong C-M (2006) The Turing model comes of molecular age. Science 314:1397-1398CrossRefGoogle Scholar
  27. McCartin BJ (1998) Seven deadly sins of numerical computation. Am Math Month December 1998, p929-941MathSciNetCrossRefGoogle Scholar
  28. Meinhardt H (2003) The algorithmic beauty of sea shells (third Edition). SpringerGoogle Scholar
  29. Nishiura Y (2002) Far-from-equilibrium dynamics (Translations of Mathematical Monographs vol 209, Am Math Soc (the original Japanese edition 1999)Google Scholar
  30. Nizan P (1932) Les chiens de garde. RiederGoogle Scholar
  31. Newman SA (1996) Sticky fingers: Hox genes and cell adhesion invertebrate limb development, BioEssays 18:171-174CrossRefGoogle Scholar
  32. Newman SA, Comper WD (1990) ‘Generic’ physical mechanism of morphogenesis and pattern formation. Development 110:1-18Google Scholar
  33. Ohta T, Kawasaki K (1986) Equilibrium morphology of binary copolymer melts. Macromolecules 19:2621-2632ADSCrossRefGoogle Scholar
  34. Ohta T, Kawasaki K (1990) Comment on the free energy functional of block copolymer melts in the strong segregation limit. Macromolecules 23:2413ADSCrossRefGoogle Scholar
  35. Ohta T, Kawasaki K, Sato A, Enomoto Y (1987) Domain growth in a quenched tricritical system. Phys Lett A 126:94-96.ADSCrossRefGoogle Scholar
  36. Onuki A (2002) Phase transition dynamics. Cambridge University PressGoogle Scholar
  37. Oono Y, Shinozaki A (1989) Cell dynamical systems, Forma 4:75-102Google Scholar
  38. Oono Y, Shiwa Y (1987) Computationally efficient modeling of block copolymers and Benard pattern formation. Mod Phys Lett B 1:49-55ADSCrossRefGoogle Scholar
  39. Oono Y, Puri S (1988) Study of phase separation dynamics by use of cell dynamical systems I. Modeling. Phys Rev A 38:434-53ADSCrossRefGoogle Scholar
  40. Pickering MJ, Garrod S (2007) Do people use language production to make predictions during comprehension? Trends Cognitive Sci 11:105-110CrossRefGoogle Scholar
  41. Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic―why environmental scientists can’t predict the future. Columbia University PressGoogle Scholar
  42. Popper K (1984) Evolutionary epistemology. In Pollard J(ed) Evolutionary Theory: paths into the future. WileyGoogle Scholar
  43. Qui T-C (1996) Self-organization of reactive polymer systems. Butsuri 56:590-593Google Scholar
  44. San Martin L, Oono Y (1998) Physics-motivated numerical solvers for partial differential equations. Phys Rev E 57:4795-4810ADSCrossRefGoogle Scholar
  45. Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104:6424-6429ADSCrossRefGoogle Scholar
  46. Shinozaki A, Oono Y (1993) Spinodal decomposition in 3-space. Phys Rev 48: 2622-2654ADSGoogle Scholar
  47. Shnerb M, Loouzoun Y, Bettelheim E, Solomon S (2000) The importance of being discrete: life always wins on the surface. Proc Natl Acad Sci USA 97:10322-10324ADSMATHCrossRefGoogle Scholar
  48. Simberloff D (2007) An angry indictment of mathematical modeling. Bioscience 57:884-885CrossRefGoogle Scholar
  49. Spooner S, In Family F, Landau DP (ed) Kinetics of aggregation and gelation. North-HollandGoogle Scholar
  50. Takenaka M, Hashimoto T (1992) Scattering studies of self-assembling processes of polymer blends in spinodal decomposition. II. Temperature dependence. J Chem Phys 96:6177-6190Google Scholar
  51. Togashi Y, Kaneko K (2005) Discreteness-induced stochastic steady state in reaction diffusion systems: self-consistent analysis and stochastic simulations. Physica D 205:87-99ADSMATHCrossRefGoogle Scholar
  52. Tomita H (1991) Preservation of isotropy at the mesoscopic stage of phase separation processes. Prog Theor Phys 85:47-56MathSciNetADSCrossRefGoogle Scholar
  53. Turcotte DL, Rundle JB (2002) Self-organized complexity in the physical, biological, and social sciences. Proc Natl Acad Sci USA 99 suppl 1:2463-2465ADSMATHCrossRefGoogle Scholar
  54. Waley A (1989) The analects of Confucius. VintageGoogle Scholar
  55. Wellik DL, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363-367ADSCrossRefGoogle Scholar
  56. Wong N-C, Knobler CM (1978) Light scattering studies of phase separation in isobutyric acid + water mixtures. J Chem Phys 69:725-735ADSCrossRefGoogle Scholar
  57. Wittgenstein L (2001) Philosophical investigations. Blackwell (original 1953)Google Scholar
  58. Yabe T, Aoki T (1994) Shoemaker-Levi comet and Jupiter collision simulation. Butsuri 49:909-912Google Scholar
  59. Yabe T, Xiao F, Utsumi T (2001) The constrained interpolation profile method for multiphase analysis. J Comp Phys 169:556-593MathSciNetADSMATHCrossRefGoogle Scholar
  60. Yamaguchi M, Yoshimoto E, Kondo S (2007) Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc Natl Acad Sci USA 104:4790-4793ADSCrossRefGoogle Scholar
  61. Yeung C, Desai RC (1994) Pattern formation in laser-induced melting. Phys Rev E 49:2096-2114ADSCrossRefGoogle Scholar
  62. Yokouchi Y, Sasaki H, Kuroiwa A (1991) Homeobox gene expression correlated with the bifurcation process of limb cartilage development, Nature 353:443-445ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshitsugu Oono
    • 1
  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations