Conceptual Analysis

—Prerequisite for Clear Argument—
  • Yoshitsugu Oono
Part of the Springer Series in Synergetics book series (SSSYN)


Conceptual analysis is to pursue a mathematical formulation of things that is maximally consistent with our intuition, but it is not an easy task. This chapter utilizes ‘chaos’ to illustrate conceptual analysis. It turns out that this requires conceptual analyses of other fundamental concepts such as ‘measure,’ ‘probability,’ ‘information,’ ‘computation,’ ‘randomness,’ etc. After elementary expositions of these concepts from the conceptual analysis point of view, a close relation between chaos and algorithmic randomness (Brudno’s theorem) is explained to exhibit the goodness of our conceptual analytical result for ‘chaos.’


Invariant Measure Chaotic System Conceptual Analysis Path Space Positive Lebesgue Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamchik V, Wagon, S (1996) π: a 2000-year search changes direction. Mathematica in Education and Research, 5(1):11-19Google Scholar
  2. Adler RL, Weiss B (1970) Similarity of automorphisms of the torus. Memoir Am Math Soc 98Google Scholar
  3. Alekseev VM (1968-9) Quasirandom dynamical systems I, II, III. Math. USSR Sbornik 5:73-128, 6:505-560, 7:1-43Google Scholar
  4. Aref H, Balachandar S (1986) Chaotic advection in a Stokes flow. Phys Fluids 29: 3515-3521MathSciNetADSMATHCrossRefGoogle Scholar
  5. Baba Y, Kubo I, Takahashi Y (1996) Li-Yorke’s scrambled sets have measure 0. Nonlinear Analysis 26:1611-1613MathSciNetMATHCrossRefGoogle Scholar
  6. Bailey D, Borwein P, Plouffe S (1997) On the rapid computation of various polylogarithmic constants. Math Computat 66:903-913MathSciNetADSMATHCrossRefGoogle Scholar
  7. Bailey DH, Borwein JM, Borwein PB, Plouffe S (1997) The quest for pi. Math Intelligencer 19(1):50-56MathSciNetMATHCrossRefGoogle Scholar
  8. Banks J, Brooks J, Cairns G, Davis G, Stacey P (1992) On Devaney’s definition of chaos. Am Math Month 99:332-334MathSciNetMATHCrossRefGoogle Scholar
  9. Bayley PJ, Frascino JC, Squire LR (2005) Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature 436:550-553ADSCrossRefGoogle Scholar
  10. Billingsley P (1960) Ergodic theory and information. WileyGoogle Scholar
  11. Block L (1978) Mappings of the interval with finitely many periodic points have zero entropy. Proc Amer Math Soc 67:357-360MathSciNetMATHCrossRefGoogle Scholar
  12. Block L (1978) Homoclinic points of mappings of the interval. Proc Amer Math Soc 72:576-580MathSciNetMATHCrossRefGoogle Scholar
  13. Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphism. Lecture Notes in Math 470Google Scholar
  14. Bridges DS (1994) Computability, a mathematical sketchbook (Graduate Texts in Mathematics 146). SpringerGoogle Scholar
  15. Brin M, Katok A (1983) On local entropy. Lecture Notes Math 1007:30-38MathSciNetCrossRefGoogle Scholar
  16. Brzeźniak Z, Zastawniak T (1998) Basic stochastic processes, a course through exercises. SpringerGoogle Scholar
  17. Cartwright ML, Littlewood JE (1945) On non-linear differential equations of the second order: I the equation ÿ + k(1 − y 2)ý + y = λ cos(λt + a), k large. J London Math Soc 20:180-189MathSciNetMATHCrossRefGoogle Scholar
  18. Cencini M, Falcioni M, Olbrich E, Kantz E, Vulpiani A (2000) Chaos or noise: difficulties of a distinction. Phys Rev E 62:427-437ADSCrossRefGoogle Scholar
  19. Chapter N, Tenenbaum JB, Yuille A (2006) Probabilistic models of cognition: Conceptual foundations. Trends Cognitive Sci 10:287-291CrossRefGoogle Scholar
  20. Cornfeld IP, Fomin SV, Sinai YaG (1982) Ergodic theory. SpringerGoogle Scholar
  21. Cover TM, King RC (1978) A converging gambling estimate of the entropy of English. IEEE Trans Inf Theor IT-24:413-421MathSciNetCrossRefGoogle Scholar
  22. Cover TM, Thomas JA (1991) Elements of information theory. WileyGoogle Scholar
  23. Cox RT (1946) Probability, frequency and reasonable expectation. Am J Phys 14:1-13ADSMATHCrossRefGoogle Scholar
  24. Crow JF (2001) Shannon’s brief foray into genetics. Genetics 159: 915-917Google Scholar
  25. Crutchfield J (1994) The calculi of emergence: computation, dynamics and induction. Physica D 75:11-54ADSMATHCrossRefGoogle Scholar
  26. Davis M (1982) Computability and unsolvability. DoverGoogle Scholar
  27. Davis PCW, Brown JR (1986) The ghost in the atom. Cambridge University PressGoogle Scholar
  28. Dawkins, R (2006) The God delusion. Houghton MifflinGoogle Scholar
  29. Durrett R (1991) Probability, theory and examples. Wadsworth & BrooksGoogle Scholar
  30. Frege G (1971) On the foundations of geometry and formal theories of arithmetic (translated and edited by E H Kluge). Yale University Press, New HavenGoogle Scholar
  31. Gandy R (1988) The confluence of ideas in 1936. In: Herken R (ed) The universal Turing machine, a half-century survey, Oxford University Press, OxfordGoogle Scholar
  32. Gillis D (2000) Philosophical theories of probability. RoutledgeGoogle Scholar
  33. Golomb SW et al (2002) Claude Elwood Shannon (1916-2002). Notices Amer Math Soc 49:8-16MathSciNetMATHGoogle Scholar
  34. Grassberger P (1989) Problems in quantifying self-generated complexity. Helv Phys Acta 62:489-511MathSciNetGoogle Scholar
  35. HeisenbergW(1971) Physics and beyond (translated by Pomerans AJ). Harper & RowGoogle Scholar
  36. Hellmuth T, Walther H, Zajoc A, Schleich W (1987) Delayed-choice experiments in quantum interference. Phys Rev A 35:2532-2541ADSCrossRefGoogle Scholar
  37. Hintikka J (1996) The principles of mathematics revisited. Cambridge University PressGoogle Scholar
  38. Hirsch MW (1984) The dynamical systems approach to differential equations. Bull Amer Math Soc 11:1-64MathSciNetMATHCrossRefGoogle Scholar
  39. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages and computation. Addison WesleyGoogle Scholar
  40. Ito K, Oono Y, Yamazaki H, Hirakawa K (1980) Chaotic behavior in great earthquakes―coupled relaxation oscillator model, billiard model and electronic circuit model―. J Phys Soc Jpn 49:43-52MathSciNetADSCrossRefGoogle Scholar
  41. Ito Sh, Tanaka S, Nakada H (1979) On unimodal linear transformations and chaos I, II. Tokyo J Math 2:221-239, 241-259MathSciNetMATHCrossRefGoogle Scholar
  42. Kan I (1984) A chaotic function possessing a scrambled set with positive Lebesgue measure. Proc Amer Math Soc 92:45-49MathSciNetMATHCrossRefGoogle Scholar
  43. Katok A, Hasselblat B (1996) Introduction to the modern theory of dynamical systems. Cambridge University PressGoogle Scholar
  44. Kitagawa T (1958) Statistical inference (Suisoku-Tokei Gaku). IwanamiGoogle Scholar
  45. Kline M (1982) Mathematics; the loss of certainty. Oxford University PressGoogle Scholar
  46. Kolmogorov AN (1957) Foundations of the theory of probability (2nd edition). ChelseaGoogle Scholar
  47. Kolmogorov AN (1958) New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Dokl Acad Nauk SSSR 119:861-864MathSciNetMATHGoogle Scholar
  48. Krieger W (1970) On entropy and generators of measure-preserving transformations. Trans Amer Math Soc 149:453-464; (1972) corrections ibid 168:519.Google Scholar
  49. Kuhn T (1996) The Structure of Scientific Revolutions (3rd ed). University of Chicago PressGoogle Scholar
  50. Langton CG (1990) Computation at the edge of chaos: phase transition and emergent computation. Physica D 42:12-37MathSciNetADSCrossRefGoogle Scholar
  51. Ledrappier F (1981) Some properties of absolutely continuous invariant measures on an interval. Ergodic Theor Dynam Syst 1:77-93MathSciNetMATHGoogle Scholar
  52. Levinson N (1949) A second order differential equation with singular solutions. Ann Math 50:127-153MathSciNetCrossRefGoogle Scholar
  53. Li M, Vitànyi P (1993) An introduction to Kolmogorov complexity and its applications. SpringerGoogle Scholar
  54. Li S-H (1992) Dynamical properties of the shift maps on the inverse limit space. Ergodic Theor Dynam Syst 12:95-108MATHGoogle Scholar
  55. Li S-H (1993) ω-chaos and topological entropy. Trans Amer Math Soc 339:243-249MathSciNetMATHGoogle Scholar
  56. Li T-Y, Yorke JA (1975) Period three implies chaos. Am Math Month 82:985-992MathSciNetMATHCrossRefGoogle Scholar
  57. Lissauer JJ (1999) Chaotic motion in the solar system. Rev Mod Phys 71:835-845ADSCrossRefGoogle Scholar
  58. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmospheric Sci 20:130-141ADSCrossRefGoogle Scholar
  59. Lorenz EN (1964) The problem of deducing the climate from the governing equation. Tellus 16:1-11ADSCrossRefGoogle Scholar
  60. Matheson C, Kirchhoff E (1997) Chaos and literature. Philosophy and Literature 21:28-45CrossRefGoogle Scholar
  61. Matsumoto K, Tsuda I (1983) Noise-induced order. J Stat Mech 31:87-106MathSciNetGoogle Scholar
  62. McCulloch WS, Pitts WA (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115-133MathSciNetMATHCrossRefGoogle Scholar
  63. McLaughlin JB, Martin PC (1975) Transition to turbulence in a statically stressed fluid system. Phys Rev A 12:186-203ADSCrossRefGoogle Scholar
  64. McMurran S, Tattersall J (1999) Mary Cartwright (1900-1998). Notices Amer Math Soc 46:214-220MathSciNetMATHGoogle Scholar
  65. Meshalkin LD (1959) A case of Bernoulli scheme isomorphism. Dokl Acad Sci USSR 128(1):41-44MATHGoogle Scholar
  66. Milani A, Nobili AN (1992) An example of stable chaos in the Solar System. Nature 357:569-571ADSCrossRefGoogle Scholar
  67. Miyataka O, Nakayama T (1960) Monte Carlo method. Nikkan-KogyoGoogle Scholar
  68. Moser J (1973) Stable and random motions in dynamical systems. Princeton University PressGoogle Scholar
  69. Nagashima H, Baba Y (1999) Introduction to chaos, physics and mathematics of chaotic phenomena. Institute of Physics PublishingGoogle Scholar
  70. Nusse HE, Yorke JA (1996) Basin of attraction. Science 271:1376-1380MathSciNetADSMATHCrossRefGoogle Scholar
  71. Oono Y (1978) Period 2n implies chaos. Prog Theor Phys 59:1029-1030ADSCrossRefGoogle Scholar
  72. Oono Y (1978) Kolmogorov-Sinai entropy as disorder parameter for chaos. Prog Theor Phys 60:1944-1945ADSCrossRefGoogle Scholar
  73. Oono Y, Osikawa M (1980) Chaos in nonlinear difference equations I. Prog Theor Phys 64:54-67MathSciNetADSMATHCrossRefGoogle Scholar
  74. Ornstein DS (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4: 337-352MathSciNetMATHCrossRefGoogle Scholar
  75. Ornstein DS (1974) Ergodic theory, randomness, and dynamical systems. Yale University PressGoogle Scholar
  76. Ornstein DS (1995) In what sense can a deterministic system be random? Chaos, Solitons & Fractals 5:139-141MathSciNetADSMATHCrossRefGoogle Scholar
  77. Ornstein DS, Weiss B (1991) Statistical properties of chaotic systems. Bull Amer Math Soc 24:11-116MathSciNetMATHCrossRefGoogle Scholar
  78. Osikawa M, Oono Y (1981) Chaos in C 0-diffeomorphism of interval. Publ RIMS 17:165-177MathSciNetMATHCrossRefGoogle Scholar
  79. Parry, W (1969) Entropy and generators in ergodic theory. BenjaminGoogle Scholar
  80. Pesin YaB (1977) Characteristic Lyapunov exponents and smooth ergodic theory. Russ Math Surveys 32(4):55-114CrossRefGoogle Scholar
  81. Petzold C (2008) The annotated Turing. WileyGoogle Scholar
  82. Poonen B (2008) Undecidability in number theory. Notices Amer Math Soc 55:344-350MathSciNetMATHGoogle Scholar
  83. Pour-ElMB, Richards JI (1989) Computability in analysis and physics. SpringerGoogle Scholar
  84. Rohlin VA (1967) Lectures on the entropy theory of transformations with an invariant measure. Russ Math Surveys 22(5):1-22MathSciNetADSCrossRefGoogle Scholar
  85. Ruelle D (1978) An inequality for the entropy of differentiable maps. Bol Soc Brasil Mat 9:83-87MathSciNetMATHCrossRefGoogle Scholar
  86. Ruelle D (1989) Elements of differentiable dynamics and bifurcation theory. Academic PressGoogle Scholar
  87. Ruelle D (1993) Chance and chaos. Princeton University PressGoogle Scholar
  88. Ruelle D, Takens F (1971) On the nature of turbulence. Comm Math Phys 20:167-192MathSciNetADSMATHCrossRefGoogle Scholar
  89. Rukhin AL (2001) Testing randomness: a suite of statistical procedures. Theory Probab Appl 45:111-137MathSciNetCrossRefGoogle Scholar
  90. Shafer G, Vovk V (2001) Probability and finance: its only a game! Wiley-InterscienceGoogle Scholar
  91. Shermer M (2011) The believing brain. Times Books Henry Holt and Co.Google Scholar
  92. Sieg W (1997) Step by recursive step: Church’s analysis of effective calculability. Bull Symbolic Logic 3:154-180MathSciNetMATHCrossRefGoogle Scholar
  93. Sinai YaG (2010) Chaos theory yesterday, today and tomorrow. J Stat Phys 138:2-7MathSciNetCrossRefGoogle Scholar
  94. Singer IM, Thorpe JA (1976) Lecture notes on elementary topology and geometry (Undergraduate Texts in Mathematics). Springer (original 1967)Google Scholar
  95. Smale S (1967) Differentiable dynamical systems. Bull Amer Math Soc 73:747-817MathSciNetMATHCrossRefGoogle Scholar
  96. Smital J (1984) A chaotic function with a scrambled set of positive Lebesgue measure. Proc Amer Math Soc 92:50-54MathSciNetMATHCrossRefGoogle Scholar
  97. Stallworth DT, Roush FW (1997) An undecidable property of definite integrals. Proc Amer Math Soc 125:2147-2148MathSciNetMATHCrossRefGoogle Scholar
  98. Sugiura S, Shimizu A (2012) Thermal pure quantum states at finite temperature. Phys Rev Lett 108:240401ADSCrossRefGoogle Scholar
  99. Tsuda I (2009) Hypotheses on the functional roles of chaotic transitory dynamics. Chaos 19:015113 (1-10)Google Scholar
  100. Umeno K (1997) Method of constructing exactly solvable chaos. Phys Rev E 55:5280-5284ADSCrossRefGoogle Scholar
  101. Valone TJ (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112:252-259CrossRefGoogle Scholar
  102. van Lambalgen, M (1990) “The axiomatization of randomness. J Symbolic Logic 55:1143-1167MathSciNetMATHCrossRefGoogle Scholar
  103. van Lambalgen M (1992) Independence, randomness and the axiom of choice. J Symbolic Logic 57:1274-1304MathSciNetMATHCrossRefGoogle Scholar
  104. van Lambalgen M (1996) Independence structures in set theory. Chapter 12 in Hodges W, Hyland M, Truss J (ed) Logic: from foundations to applications, European logic colloquium. Clarendon PressGoogle Scholar
  105. Viana M (2000) What’s new on Lorenz strange attractor. Math Intelligencer 22(3):6-19MathSciNetMATHCrossRefGoogle Scholar
  106. Wackerbauer R, Witt A, Atmanspacher H, Kurths J, Scheingraber H (1994) A comparative classification of complexity measures. Chaos, Solitons & Fractals 4:133-173MathSciNetADSMATHCrossRefGoogle Scholar
  107. Wagon S (1993) The Banach-Tarski paradox. Cambridge University PressGoogle Scholar
  108. Walters P (1982) An introduction to ergodic theory. SpringerGoogle Scholar
  109. Weisstein EW Lorenz attractor. From MathWorld―A Wolfram Web Resource,
  110. Williams RF (1998) The universal templates of Ghrist. Bull Amer Math Soc 35:145-156MathSciNetMATHCrossRefGoogle Scholar
  111. Wittgenstein L (2001) Philosophical investigations. Blackwell (original 1953)Google Scholar
  112. Zvonkin AK, Levine LA (1970) The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ Math Surveys 25(6):83-124ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshitsugu Oono
    • 1
  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations