Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 101))

  • 1610 Accesses

Abstract

We have many demands to understand flow phenomena in many industrial applications. Detecting the gas–liquid interface is important when measuring velocities in two-phase flow or in an open channel. We want to obtain velocity distributions two dimensionally, also. To extend the applicability, many techniques utilizing the ultrasonic Doppler velocity profiler (UVP) have been recently developed. This chapter shows these extended techniques. Liquid and gas velocity distributions are obtained simultaneously using a multi-wave transducer are described in Sect. 7.1. Techniques detecting a gas–liquid interface depending on fluid interface relative to the ultrasonic wavelength are presented in Sect. 7.2. The UVP is utilized for measuring void fraction distributions in Sect. 7.3. Section 7.4 shows a technique measuring two-dimensional velocity components. A new approach for improving temporal resolution using the ultrasonic correlation method is presented in Sect. 7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakawa H, Kikura H, Aritomi M (2005) Application of ultrasonic Doppler method for bubbly flow measurement using two ultrasonic frequencies. Exp Therm Fluid Sci 29:843–850

    Article  Google Scholar 

  2. Murakawa H, Kikura H, Aritomi M (2008) Application of ultrasonic multi-wave method for two-phase bubbly and slug flows. Flow Meas Inst 19:205–213

    Article  Google Scholar 

  3. Murai Y, Tasaka Y, Nambu Y, Takeda Y, Gonzalez ASR (2010) Ultrasonic detection of moving interfaces in gas-liquid two-phase flow. Flow Meas Inst 21:356–366

    Article  Google Scholar 

  4. Murai Y, Fujii H, Tasaka Y, Takeda Y (2006) Turbulent bubbly channel flow investigated by ultrasound velocity profiler. J Fluid Sci Technol 1:12–23

    Article  Google Scholar 

  5. Acheson DJ (1989) Elementary fluid dynamics. Oxford University Press, Oxford, pp 89–100

    Google Scholar 

  6. Gonzalez SR, Murai Y, Takeda Y (2009) Ultrasound based gas-liquid interface detection in gas-liquid two phase flows. Adv Chem Eng 37:1–27

    Article  Google Scholar 

  7. Otsu N (1979) A threshold selection method from gray level. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  8. Murai Y, Ohta S, Shigetomi A, Tasaka Y, Takeda Y (2009) Development of an ultrasonic void fraction profiler. Meas Sci Technol 20:114003

    Article  Google Scholar 

  9. Julia JE, Harteveld WK, Muddle RF, Van Den Akker HEA (2005) On the accuracy of the void fraction measurements using optical probes. Rev Sci Instrum 76:035103

    Article  Google Scholar 

  10. Schleicher E, da Silva MJ, Thiele S, Li A, Wollrab E, Hampel U (2008) Design of an optical tomograph for the investigation of single- and two-phase pipe flows. Meas Sci Technol 19:094006

    Article  Google Scholar 

  11. Murai Y, Matsumoto Y, Yamamoto F (2001) Three dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp Fluids 30:11–21

    Article  Google Scholar 

  12. Murai Y, Oiwa H, Sasaki T, Kondou K, Yoshikawa S, Yamamoto F (2005) Backlight imaging tomography for gas–liquid two-phase flow in a helically coiled tube. Meas Sci Technol 16:1459–1468

    Article  Google Scholar 

  13. Kim S, Fu XY, Wang X, Ishii M (2000) Development of the miniaturized four-sensor conductivity probe and the signal processing scheme. Int J Heat Mass Transfer 43:4101–4018

    Article  MATH  Google Scholar 

  14. Neal LG, Bankoff SG (1963) High resolution resistivity probe for determination of local void properties in gas–liquid flow. AIChE J 9:490–494

    Article  Google Scholar 

  15. Yang HC, Kim DK, Kim MH (2003) Void fraction measurement using impedance method. Flow Meas Inst 14:151–160

    Article  Google Scholar 

  16. Warsito W, Fan LS (2001) Measurement of real-time flow structures in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography. Chem Eng Sci 56: 6455–6462

    Article  Google Scholar 

  17. Felton K, Loth E (2002) Diffusion of spherical bubbles in a turbulent boundary layer. Int J Multiphase Flow 28:69–92

    Article  MATH  Google Scholar 

  18. Supardan MD, Masuda Y, Uchida SM (2007) The investigation of gas holdup distribution in a two-phase bubble column using ultrasonic computer tomography. Chem Eng J 130:125–133

    Article  Google Scholar 

  19. Xu LJ, Xu LA (1997) Gas-liquid two-phase flow regime identification by ultrasonic tomography. Flow Meas Inst 8:145–155

    Article  Google Scholar 

  20. Longo S (2006) The effects of air bubbles on ultrasound velocity measurements. Exp Fluids 41:593–602

    Article  Google Scholar 

  21. Takeda Y (1987) Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nucl Technol 79:120–124

    Google Scholar 

  22. Takeda Y (1995) Instantaneous velocity profile measurement by ultrasonic Doppler method. Invited paper. JSME Int J B 38:8–16

    Article  Google Scholar 

  23. Shen C, Lemmin U (1996) Ultrasonic measurements of suspended sediments: a concentration profiling system with attenuation compensation. Meas Sci Technol 7:1191–1194

    Article  Google Scholar 

  24. Lemmin U, Rolland T (1997) Acoustic velocity profiler for laboratory and field studies. J Hydraul Eng ASCE 123:1089–1098

    Article  Google Scholar 

  25. Hurther D, Lemmin U (1998) A constant beam width transducer for 3D acoustic Doppler profile measurement in open-channel flows. Meas Sci Technol 9:1706–1714

    Article  Google Scholar 

  26. Obayashi H, Tasaka Y, Kon S, Takeda Y (2008) Velocity vector profile measurement using multiple ultrasonic transducers. Flow Meas Inst 19:189–195

    Article  Google Scholar 

  27. Ozaki Y, Kawaguchi T, Takeda Y, Hishida K, Maeda M (2002) High time resolution ultrasonic velocity profiler. Exp Therm Fluid Sci 26:253–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Murakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Murakawa, H., Kawaguchi, T., Obayashi, H., Murai, Y., Tasaka, Y. (2012). Extended Techniques. In: Takeda, Y. (eds) Ultrasonic Doppler Velocity Profiler for Fluid Flow. Fluid Mechanics and Its Applications, vol 101. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54026-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54026-7_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54025-0

  • Online ISBN: 978-4-431-54026-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics