Skip to main content

Practical Applications

  • Chapter
  • First Online:
Ultrasonic Doppler Velocity Profiler for Fluid Flow

Abstract

Because of the advantages of the ultrasonic velocity Doppler profiler (UVP), namely in spatiotemporal velocity field measurements and in its applicability for opaque liquids, UVP has a wide field of application in science and industry. The following chapter introduces carefully selected examples of applications covering relatively basic areas of application. The focus of the contents in this chapter is categorized into (1) studies of flow instability and transition (Sect. 5.1), (2) measurements and investigations of liquid metal flows (Sect. 5.2), (3) developments of new rheometry (Sect. 5.3), (4) determinations of rheological properties (Sect. 5.4), (5) studies of magnetic fluids (Sect. 5.5) and (6) gas–liquid two-phase flow (Sect. 5.6), (7) measurements of flowrate in turbidity flows (Sect. 5.7), and (8) ­determinations of flows in a deforming tube for biomedical applications (Sect. 5.8). The measurement and post-processing techniques used in this chapter are described in detail in Chaps. 4 and 7, and detailed explanations of these aspects are omitted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drain P, Reid W (1981) Hydrodynamic stability. Cambridge University Press, New York

    Google Scholar 

  2. Takeda Y, Fischer WE (1993) Measurement of energy spectral density of a flow in a rotating Couette system. Phys Rev Lett 70(23):3569–3571

    Article  Google Scholar 

  3. Takeda Y, Ficher WE, Sakakibara J, Ohmura K (1993) Experimental observation of the quasiperiodic modes in a rotating Couette system. Phys Rev E 47(6):4130–4134

    Article  Google Scholar 

  4. Takeda Y, Fischer WE, Sakakibara J (1994) Decomposition of the modulated waves in a rotating Couette system. Science 263:502–505

    Article  Google Scholar 

  5. Takeda Y (1999) Quasi-periodic state and transition to turbulence in a rotating Couette system. J Fluid Mech 389:81–99

    Article  MATH  Google Scholar 

  6. Andereck C, Liu SS, Swinney HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183

    Article  Google Scholar 

  7. Tasaka Y, Kon S, Schouveiler L, Le Gal P (2006) Hysteretic mode exchange in the wake of two circular cylinders in tandem. Phys Fluids. doi:10.1063/1.2227045

  8. Mizushima J, Suehiro N (2005) Instability and transition of flow past two tandem circular cylinders. Phys Fluids. doi:doi:10.1063/1.2104689

  9. Tokuhiro A, Takeda Y (1993) Measurement of flow phenomena using the ultrasonic velocity profile method in a simulated Czochralski crystal puller. J Crystal Growth 130:421–432

    Article  Google Scholar 

  10. Tasaka Y, Iima M (2009) Flow transition in the surface switching of rotating fluid. J Fluid Mech 636:475–484

    Article  MATH  Google Scholar 

  11. Suzuki T, Iima M, Hayase Y (2006) Surface switching of rotating fluid in a cylinder. Phys Fluids. doi:10.1063/1.2359740

  12. Tasaka Y, Ito K, Iima M (2008) Visualization of a rotating flow under large-deformed free surface using anisotropic flakes. J Visualization 11(2):163–172

    Article  Google Scholar 

  13. Furuichi N, Takeda Y, Kumada M (2003) Spatial structure of the flow through an axisymmetric sudden expansion. Exp Fluids 34:643–650

    Article  Google Scholar 

  14. Armly BF, Drust F, Pereira JCF, Shönung B (1983) Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech 127:473–496

    Article  Google Scholar 

  15. Furuichi N, Yoshida M, Kumada M (2005) An unsteady flow structure on a heated rotating disk under mixed convection. Heat Trans Asian Res 34(6):407–418

    Article  Google Scholar 

  16. Belmonte A, Tilgner T, Libchaber A (1994) Temperature and velocity boundary layers in turbulent convection. Phys Rev E 50:269–279

    Article  Google Scholar 

  17. Sreenivasan KR, Bershadskii A, Niemela JJ (2003) Mean wind and its reversal in thermal convection. Phys Rev E 65:056306

    Article  Google Scholar 

  18. Ahlers G, Grossmann S, Lohse D (2009) Heat transfer and large scale dynamics in turbulent RB convection. Rev Mod Phys 81:503–537

    Article  Google Scholar 

  19. Funfschilling D, Brown E, Ahlers G (2008) Torsional oscillations of the large scale circulation in turbulent RB convection. J Fluid Mech 607:119–139

    Article  MATH  Google Scholar 

  20. Xi HD, Zhou SQ, Zhou Q, Chan TS, Xia KQ (2009) Origin of the temperature oscillation in turbulent thermal convection. Phys Rev Lett 102:044503

    Article  Google Scholar 

  21. Takeshita T, Segawa T, Glazier JA, Sano M (1996) Thermal turbulence in mercury. Phys Rev Lett 76:1465–1468

    Article  Google Scholar 

  22. Cioni S, Ciliberto S, Sommeria J (1997) Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J Fluid Mech 335:111

    Article  MathSciNet  Google Scholar 

  23. Glazier JA, Segawa T, Naert A, Sano M (1999) Evidence against ultrahard thermal turbulence at very high Rayleigh numbers. Nature (Lond) 398:307–310

    Article  Google Scholar 

  24. Takeda Y (1986) Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow 7:313–318

    Article  Google Scholar 

  25. Ito T, Tsuji Y, Kukita Y (2001) Application of ultrasonic velocity profile meter to vortex shedding and empirical eigenfunction analysis. Exp Fluids 31:324–335

    Article  Google Scholar 

  26. Tasaka Y, Takeda Y, Yanagisawa T (2008) Ultrasonic visualization of thermal convective motion in a liquid gallium layer. Flow Meas Inst 19(3–4):131–137

    Article  Google Scholar 

  27. Mashiko T, Tsuji Y, Mizuno T, Sano M (2004) Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys Rev E 69:036306

    Article  Google Scholar 

  28. Tsuji Y, Mizuno T, Mashiko T, Sano M (2006) Mean wind in convective turbulence of mercury. Phys Rev Lett 94:034501

    Article  Google Scholar 

  29. Hayakawa T, Tsuji Y (2010) Mean wind: its velocity and temperature fluctuation in low-­Pr-number thermal convection. Physica D 239:1353–1358

    Article  Google Scholar 

  30. Yanagisawa T, Yamagishi Y, Hamano Y, Tasaka Y, Yoshida M, Yano K, Takeda Y (2010) Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium. Phys Rev E 82:016320

    Article  Google Scholar 

  31. Yanagisawa T, Yamagishi Y, Hamano Y, Tasaka Y, Yano K, Takahashi J, Takeda Y (2010) Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: suppression of oscillatory flow observed by velocity profiles. Phys Rev E 82:056306

    Article  Google Scholar 

  32. Yanagisawa T, Yamagishi Y, Hamano Y, Tasaka Y, Takeda Y (2011) Spontaneous flow ­reversals in Rayleigh–Bénard convection of a liquid metal. Phys Rev E 83:036307

    Article  Google Scholar 

  33. Reolfs F, Siccama NB, Willemsen SM (2007) Development of an Euler–Euler two-phase model for application in the windowless XT-ADS spallation target design. Proceedings, ICAPP, paper 7092

    Google Scholar 

  34. Batta A, Class A (2007) A numerical investigation on geometrical designs of the windowless XT-ADS spallation target. Proceedings, ICAPP, paper 7479

    Google Scholar 

  35. Batta A, Class A (2008) Free surface modeling and simulation of the water experiment for the XT-ADS spallation target. Proceedings, ICAPP, paper 8049

    Google Scholar 

  36. Eckert S, Gerbeth G (2002) Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp Fluids 32:542–546

    Article  Google Scholar 

  37. Eckert S, Gerbeth G, Melnikov VI (2003) Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide. Exp Fluids 35:381–388

    Article  Google Scholar 

  38. Eckert S, Willers B, Gerbeth G (2005) Measurements of the bulk velocity during solidification of metallic alloys. Metallurg Mater Trans A 36:267–270

    Article  Google Scholar 

  39. Kowalewski TA (1980) Velocity profiles of suspension flowing through a tube. Arch Mech 32(6):857–865

    Google Scholar 

  40. Müller M, Brunn P, Harder C (1997) New rheometric technique: the gradient-ultrasound pulse Doppler method. Appl Rheol 7(5):204–210

    Google Scholar 

  41. Ouriev B (2000) Ultrasound Doppler based in-line rheometry of highly concentrated suspensions. PhD thesis, ETH, Zürich

    Google Scholar 

  42. Dogan N, McCarthy M, Powell R (2002) In-line measurement of rheological parameters and modeling of apparent wall slip in diced tomato suspensions using ultrasonics. Food Eng Phys Properties 67(6):2235–2240

    Google Scholar 

  43. Birkhofer BH (2007) Ultrasonic in-line characterization of suspensions. PhD thesis, ETH, Zurich. http://e-collection.ethbib.ethz.ch/view/eth:29828

  44. Wiklund J (2007) Ultrasound Doppler based in-line rheometry: development, validation and application. PhD thesis, Lund University

    Google Scholar 

  45. Fock H, Wiklund J, Rasmuson A (2009) Ultrasound velocity profile (UVP) measurements of pulp suspension flow near the wall. J Pulp Pap Sci 35:26–33

    Google Scholar 

  46. Wassell P, Wiklund J, Stading M, Bonwick G, Smith C, Almiron-Roig E, Young NWG (2010) Ultrasound Doppler based in-line viscosity and solid fat profile measurement of fat blends. Int J Food Sci Technol 45(5):877–883

    Google Scholar 

  47. Dogan N, McCarthy MJ, Powell RL (2005) Application of an in-line rheological characterization method to chemically modified and native corn starch. J Texture Stud 36:237–254

    Article  Google Scholar 

  48. Köseli V, Zeybek Ş, Uludağ Y (2006) Online viscosity measurement of complex solutions using ultrasound Doppler velocimetry. Turk J Chem 30(6):297–305

    Google Scholar 

  49. Wiklund J, Shahram I, Stading M (2007) Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci 62:4277–4293

    Article  Google Scholar 

  50. Thompson RS, Tortoli P, Aldis GK (2000) Selective transmission of a focused Doppler ultrasound beam through a plastic layer. Ultrasound Med Biol 26(8):1333–1346

    Article  Google Scholar 

  51. Dogan N, McCarthy MJ, Powell RL (2005) Measurement of polymer melt rheology using ultrasonics-based in-line rheometry. Measurement Sci Technol 16:1684–1690

    Article  Google Scholar 

  52. Petit P, Birkhofer B, Lootens D (2010) Wall shear measurement based on ultrasonic velocimetry for process in-line rheometry. In: Wiklund J, Bragd EL, Manneville S (eds) Proceedings, 7th international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering, pp 17–20

    Google Scholar 

  53. Choi YJ, McCarthy KL, McCarthy MJ (2005) A MATLAB graphical user interface program for tomographic viscometer data processing. Comput Electron Agric 47(1):59–67

    Article  Google Scholar 

  54. Wilkinson WL (1960) Non-Newtonian fluids: fluid mechanics, mixing and heat transfer, vol 1. Pergamon, London

    Google Scholar 

  55. Wiklund J, Johansson M, Shaik J, Fischer P, Windhab E, Stading M, Hermansson A-M (2002) In-line ultrasound based rheometry of industrial and model suspensions flowing through pipes. In: Papers of the third international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering. EPFL Lausanne, Paul Scherrer Institut, pp 69–76

    Google Scholar 

  56. Wiklund J, Stading M (2008) Application of in-line ultrasound Doppler-based UVP-PD rheometry method to concentrated model and industrial suspensions. Flow Meas Instrum 19(3–4):171–179

    Article  Google Scholar 

  57. Kotze R, Wiklund J, Haldenwang R, Fester VG (2010) Measurement and analysis of flow behaviour in complex geometries using ultrasonic velocity profiling (uvp) technique. Flow Meas Sci J 22(2):110–119

    Article  Google Scholar 

  58. Jorgensen JE, Campau DN, Baker DW (1973) Physical characteristics and mathematical modeling of pulsed ultrasonic flowmeter. Med Biol Eng 11(4):404–421

    Article  Google Scholar 

  59. Jorgensen JE, Garbini JL (1974) An analytical procedure of calibration for the pulsed ultrasonic Doppler flow meter. Trans ASME/J Fluids Eng 96:158–167

    Article  Google Scholar 

  60. Hughes PE, How TV (1993) Quantitative measurement of wall shear rate by pulsed Doppler ultrasound. J Med Eng Technol 17(2):58–64

    Article  Google Scholar 

  61. Hughes PE, How TV (1994) Pulsatile velocity distribution and wall shear rate measurement using pulsed Doppler ultrasound. J Biomech 27(1):103–110

    Article  Google Scholar 

  62. Tortoli P, Guidi G, Newhouse VL (1995) Improved blood velocity estimation using the maximum Doppler frequency. Ultrasound Med Biol 21(4):527–532

    Article  Google Scholar 

  63. Ouriev B (2002) Investigation of the wall slip effect in highly concentrated disperse systems by means of non-invasive UVP-PD method in the pressure driven shear flow. Colloid J 64(6):740–745

    Article  Google Scholar 

  64. Wunderlich T, Brunn PO (1999) Ultrasound pulse Doppler method as a viscometer for process monitoring. Flow Meas Instrum 10(4):201–205

    Article  Google Scholar 

  65. Ouriev B, Windhab EJ (2002) Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method. Exp Fluids 32:204–211

    Article  Google Scholar 

  66. Brunn PO, Wunderlich T, Müller M (2004) Ultrasonic rheological studies of a body lotion. Flow Meas Instrum 15(3):139–144

    Article  Google Scholar 

  67. Powell R, Pfund D (2005) Non-invasive diagnostics for measuring physical properties and processes in high level wastes. Technical report, University of California Davis (US). http://www.osti.gov/bridge/product.biblio.jsp?osti_id=841672

  68. Kotzé R, Haldenwang R, Slatter P (2008) Rheological characterisation of highly concentrated mineral suspensions using an ultrasonic velocity profiler. In: Chara Z, Bareš V (eds) Proceedings, 6th international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering, pp 99–102

    Google Scholar 

  69. Norton I, Spyropoulos F, Cox P, Birkhofer B (2010) Doppler ultrasound-based rheology. In: Norton I, Spyropoulos F, Cox P (eds) Practical food rheology: an interpretive approach. Wiley Online Library

    Google Scholar 

  70. Murai Y, Tasaka Y, Sakurai K, Oyama K, Takeda Y (2010) Ultrasound Doppler rheometry from spin response of viscoelastic and bubbly Liquids. In: Proceedings, 7th international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering, pp 9–12

    Google Scholar 

  71. Murai Y, Sakurai K, Oyama K, Tasaka Y, Takeda Y (2010) Ultrasound Doppler rheometry for viscoelastic liquids. In: Proceedings, 5th Pacific rim conference on rheology (USB Book of Abstracts) A-2-4:1–2

    Google Scholar 

  72. Oyama K, Tasaka Y, Murai Y, Takeda Y (2009) Ultrasonic investigation of oscillating pipe flow of visco-elastic fluid. In: Proceedings, international Symposium on food rheology and structure, Zurich, pp 480–481

    Google Scholar 

  73. Wiklund J, Stading M, Pettersson AJ, Rasmuson A (2006) A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow. AIChE J 52(2):484–495

    Article  Google Scholar 

  74. Birkhofer BH, Jeelani SAK, Windhab EJ, Ouriev B, Lisner KJ, Braun P, Zeng Y (2008) Monitoring of fat crystallization process using UVP-PD technique. Flow Meas Instrum 19(3–4):163–169

    Article  Google Scholar 

  75. Dogan N, McCarthy MJ, Powell RL (2003) In-line flow and rheology measurements of complex, opaque fluids with velocimeter based rheometry using ultrasonics. In: Fischer P, Marti I, Windhab EJ (eds) Proceedings, 3rd international symposium on food rheology and structure (ISFRS 2003), pp 453–454

    Google Scholar 

  76. Rosensweig RE (1985) Ferrohydrodynamics. Dover, New York, Chapter 2

    Google Scholar 

  77. Ido Y (2005) Basic equations and constitutive equations of micropolar magnetic fluids with E-B analogy and the Abraham expression of electromagnetic momentum. JSME Int J Ser B 48:488–493

    Article  Google Scholar 

  78. Kamiyama S, Koike K, Oyama T (1983) Pipe flow resistance of magnetic fluids in a nonuniform transverse magnetic field. J Magn Magn Mater 39:23–26

    Article  Google Scholar 

  79. Motozawa M, Chang J, Sawada T, Kawaguchi Y (2010) Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Phys Procedia 9:190–193

    Article  Google Scholar 

  80. Iwamoto Y, Yamaguchi H, Niu XD (2011) Magnetically-driven heat transport device using a binary temperature-sensitive magnetic fluid. J Magn Magn Mater 323:1378–1383

    Article  Google Scholar 

  81. Ohno K, Suzuki H, Sawada T (2011) Analysis of liquid sloshing of a tuned magnetic fluid damper for single and co-axial cylindrical containers. J Magn Magn Mater 323:1389–1393

    Article  Google Scholar 

  82. Ferrotec Corporation home page: http://www.ferrotec.com/

  83. Bulte JWM (2005) Magnetic nanoparticles as markers for cellular MR imaging. J Magn Magn Mater 289:423–427

    Article  Google Scholar 

  84. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181

    Article  Google Scholar 

  85. Jordan J et al (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  Google Scholar 

  86. Kikura H, Takeda Y, Durst F (1999) Velocity profile measurement of the Taylor vortex flow of a magnetic fluid using the ultrasonic Doppler method. Exp Fluids 26:208–214

    Article  Google Scholar 

  87. Sawada T, Kikura H, Tanahashi T (1999) Kinematic characteristics of magnetic fluid sloshing in a rectangular container subject to non-uniform magnetic fields. Exp Fluids 26:215–221

    Article  Google Scholar 

  88. Yamanaka G, Kikura H, Takeda Y, Aritomi M (2002) Flow measurement on an oscillating pipeflow near the entrance using the UVP method. Exp Fluids 32:212–220

    Article  Google Scholar 

  89. Motozawa M, Iizuka Y, Sawada T (2008) Experimental measurements of ultrasonic propagation velocity and attenuation in a magnetic fluid. J Phys Cond Mater 20:204117

    Article  Google Scholar 

  90. Jeyadevan B, Nakatani I (1999) Characterization of field-induced needle-like structures in ionic and water-based magnetic fluids. J Magn Magn Mater 201:62–65

    Article  Google Scholar 

  91. Pipkin AC (1964) Annular effect in viscoelastic fluids. Phys Fluids 7:1143–1146

    Article  MathSciNet  MATH  Google Scholar 

  92. Di Prima RC, Swinney HI (1981) Instabilities and transition in flow between concentric rotating cylinders. Hydrodynamic instabilities and the transition to turbulence. Top Appl Phys 45:139–180

    Article  Google Scholar 

  93. Escudier MP, Gouldson IW, Jones DM (1994) Circular Couette flow and Taylor vortices in shear-thinning liquids. In: Adrian RJ et al. (eds) Development in Laser Techniques and Applications to Fluid Mechanics, Springer-Verlag, Berlin

    Google Scholar 

  94. Murai Y, Fujii H, Tasaka Y, Takeda Y (2006) Turbulent bubbly channel flow investigated by ultrasound velocity profiler. J Fluid Sci Technol 1–1:12–23

    Article  Google Scholar 

  95. Gonzalez SR, Murai Y, Takeda Y (2009) Ultrasound based gas–liquid interface detection in gas–liquid two phase flows. Adv Chem Eng 37:1–27

    Article  Google Scholar 

  96. Murai Y, Oiwa H, Sasaki T, Kondou K, Yoshikawa S, Yamamoto F (2005) Backlight imaging tomography for gas–liquid two-phase flow in a helically coiled tube. Meas Sci Technol 16:1459–1468

    Article  Google Scholar 

  97. Murai Y, Inaba K, Takeda Y, Yamamoto F (2007) Backlight imaging tomography for slug flows in straight and helical tubes. Flow Meas Instrum 18:223–229

    Article  Google Scholar 

  98. Minagawa H, Fukazawa T, Nakazawa Y, Yamada S, Shiomi Y (2006) Measurement of averaged liquid velocity field around large bubbles using UVP. Trans JSME Ser B 72:345–352

    Article  Google Scholar 

  99. Minagawa H, Yamada S, Yasuda T, Shiomi Y (2008) Effect of pipe diameter on the flow field around single large bubble rising in stagnant water in a vertical pipe. Jpn J Multiphase Flow 22–2:154–160

    Article  Google Scholar 

  100. Minagawa H, Yamada S, Yasuda T, Shiomi Y (2008) Effect of liquid viscosity on the average velocity field around single large bubbles in a vertical pipe. Trans JSME Ser B 74(740):811–817

    Article  Google Scholar 

  101. Zhou S, Suzuki Y, Aritomi M, Matsuzaki M, Takeda Y, Mori M (1998) Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. (III) Comparison of flow characteristics between bubbly cocurrent and countercurrent flows. J Nucl Sci Technol 35:335–343

    Article  Google Scholar 

  102. Suzuki Y, Nakagara M, Aritomi M, Murakawa H, Kikura H, Mori M (2002) Microstructure of the flow field around a bubble in counter-current bubbly flow. Exp Thermal Fluid Sci 26:221–227

    Article  Google Scholar 

  103. Murakawa H, Kikura H, Aritomi M (2003) Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic Doppler method. J Nucl Sci Technol 40:644–654

    Article  Google Scholar 

  104. Durst F, Melling A, Whitelaw JH (1981) Principle and practice of laser Doppler anemometry. Academic, London

    Google Scholar 

  105. Tropea C (1983) A note concerning the use of a one-component LDA to measure shear stress terms. Exp Fluids 1:209

    Article  Google Scholar 

  106. Tezuka K, Wada S, Endo T, Oshimi H (2009) Number densities of micro bubbles suited to the ultrasonic Doppler method. In: Proceedings of JSME Fludis Engng Conf 2009. CD-ROM No. 1805

    Google Scholar 

  107. Wada S, Endo T, Tezuka K, Uenishi Y (2009) Evaluation of open-channel flow rate measurement at hydraulic power station using ultrasonic pulse-Doppler velocity-profile method. Proc Inst Elect Eng Jpn 7:130

    Google Scholar 

  108. Ito D, Kikura H, Aritomi M, Wada S (2009) Simultaneous measurement of bottom shape and flow rate in open channel using ultrasonic array sensor. In: Proceedings of JSME Fludis Engng Conf 2009. CD-ROM No. 1808

    Google Scholar 

  109. Japanese Electrotechnical Committee (1992) Standard of the Japanese Electrotechnical Comittee (Chapt. 7). Denkishoin, Japan

    Google Scholar 

  110. Tezuka K, Suzuki T, Mori M, Kanamine T (2005) Application of ultrasonic pulse-Doppler velocity-profile flowmeter for hydraulic power plant. In: Proceedings of JSME Fludis Engng Conf 2005. CD-ROM No. 1109

    Google Scholar 

  111. Tezuka K, Mori M, Suzuki T, Kanamine T (2008) Ultrasonic pulse-Doppler flow meter application for hydraulic power plants. Flow Meas Instrum 19(3–4):155–162

    Article  Google Scholar 

  112. Suzuki T, Tezuka K, Mori M (2006) industrial application of new type flow-metering system using ultrasonic-Doppler profile-velocimetry. In: 23rd IAHR symposium on hydraulic machinery and system, p 263

    Google Scholar 

  113. Yokoyama H, Kojima S, Okubo T, Tasaka Y, Takeda Y, Yoshida S (2006) Environmental flow measurement using ultrasonic velocity profiler. Trans JSME Ser B 72(719):1694–1701

    Article  Google Scholar 

  114. Heil M (1997) Stokes flow in collapsible tubes: computation and experiment. J Fluid Mech 353:285–312

    Article  MATH  Google Scholar 

  115. Grotberg JB, Jensen OE (2004) Biofluid mechanics in flexible tubes. Annu Rev Fluid Mech 36:121–147

    Article  MathSciNet  Google Scholar 

  116. Nahar S, Jeelani SAK, Windhab EJ (2012) Influence of elastic tube deformation on flow behavior of a shear thinning fluid. Chem Eng Sci 75:445–455

    Google Scholar 

  117. Lew HS, Fung YC, Lowenstein CB (1971) Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristalsis of the small intestine). J Biomech 4:297–315

    Article  Google Scholar 

  118. Yin FCP, Fung YC (1971) Comparison of theory and experiment in peristaltic transport. J Fluid Mech 47(1):93–112

    Article  Google Scholar 

  119. Weinberg SL, Eckstein EC, Shapiro AH (1971) An experimental study of peristaltic pumping. J Fluid Mech 49(3):461–479

    Article  Google Scholar 

  120. Rao AR, Mishra M (2004) Peristaltic transport of a power-law fluid in a porous tube. J Non-Newtonian Fluid Mech 121:163–174

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Tasaka, Y. et al. (2012). Practical Applications. In: Takeda, Y. (eds) Ultrasonic Doppler Velocity Profiler for Fluid Flow. Fluid Mechanics and Its Applications, vol 101. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54026-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54026-7_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54025-0

  • Online ISBN: 978-4-431-54026-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics