Skip to main content

Various Physical and Chemical Properties of Lotus Metals

  • Chapter
  • First Online:
Porous Metals with Directional Pores
  • 872 Accesses

Abstract

Lotus metals have anisotropic pore configuration. Such anisotropic pores yield anisotropic behavior of sound absorption, electrical and thermal conductivity, magnetization, and corrosion behavior, because the pore itself affects those materials characteristics. However, it does not affect thermal expansion, because only nonporous body controls thermal expansion. Thus, lotus metals exhibit unique characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie ZK, Ikeda T, Okuda Y, Nakajima H (2004) Mater Sci Eng A 386:390–395

    Google Scholar 

  2. Xie ZK, Ikeda T, Okuda Y, Nakajima H (2004) Jpn J Appl Phys 43:7315–7319

    Article  CAS  Google Scholar 

  3. Xie ZK, Ikeda T, Okuda Y, Nakajima H (2004) Mater Sci Forum 449–452:661–664

    Article  Google Scholar 

  4. Kimura S (1977) Architectural sound and anti-noise plan. Shokokusha Publishing, Tokyo, p 142 (in Japanese)

    Google Scholar 

  5. Xie ZK, Ikeda T, Okuda Y, Nakajima H (2003) J Jpn Inst Metals 67:708–713

    CAS  Google Scholar 

  6. Okuda Y (1990) Proc J Acoustic Soc Jpn 581

    Google Scholar 

  7. Akiyama S, Itoh M, Ishii E (1991) National Industrial Research Institute. Report of Kyushu, p 2928

    Google Scholar 

  8. Nisimaki S (1971) Electro-acoustics and vibration. Corona Publishing, Tokyo, Japan, p 79

    Google Scholar 

  9. Beranek LL (1950) Acoustic measurement. Wiley, New York

    Google Scholar 

  10. Igarasi J (1970) Sound and vibration. Kyoritsu Shuppan Co., Tokyo, p 37

    Google Scholar 

  11. Behrens E (1968) J Compos Mater 2:2–17

    Article  Google Scholar 

  12. Perrins WT, McKenzie DR, McPhedran RC (1979) Proc Roy Soc London Ser 369:207

    Article  CAS  Google Scholar 

  13. Han LS, Cosner AA (1981) J Heat Transfer 103:387–392

    Article  Google Scholar 

  14. Sangani AS, Yao C (1988) Phys Fluids 31:2435–2444

    Article  Google Scholar 

  15. Mityushev V (1999) Proc Roy Soc London A 455:2513–2528

    Article  Google Scholar 

  16. Moctezuma-Berthier A, Vizika O, Adler PM (2002) Trans Porous Media 49:331–332

    Article  Google Scholar 

  17. Ogushi T, Chiba H, Nakajima H, Ikeda T (2004) J Appl Phys 95:5843–5847

    Article  CAS  Google Scholar 

  18. Hyun SK, Murakami K, Nakajima H (2001) Mater Sci Eng A 299:241–248

    Article  Google Scholar 

  19. Suematsu Y, Hyun SK, Nakajima H (2004) J Jpn Inst Metals 68:257–261

    Article  CAS  Google Scholar 

  20. Tane M, Hyun SK, Nakajima H (2005) J Appl Phys 97:103701-1–103701-4

    Article  Google Scholar 

  21. Tane M, Ichitsubo T (2004) Appl Phys Lett 85:197–199

    Article  CAS  Google Scholar 

  22. Archie GE (1942) Trans AIME 146:54–63

    Google Scholar 

  23. Eshelby JD (1957) Proc Roy Soc London A 241:376–396

    Article  Google Scholar 

  24. Mori T, Tanaka K (1973) Acta Metall 21:571–574

    Article  Google Scholar 

  25. Hatta H, Taya M (1986) J Eng Mater 24:1159–1172

    CAS  Google Scholar 

  26. Ohnishi Y, Hyun SK, Nakajima H (2006) In: Nakajima H, Kanetake N (eds) Porous metals and metal foaming technology. Jpn Inst Metals, Sendai, pp 423–426

    Google Scholar 

  27. Noudem JG, Reddy ES, Schmitz GJ (2003) Physica C 390:286–290

    Article  CAS  Google Scholar 

  28. Castano FJ, Nielsch K, Ross CA, Robinson JWA, Krishnan R (2004) Appl Phys Lett 85:2873–2875

    Article  Google Scholar 

  29. Onishi H, Hyun SK, Nakajima H, Mitani S, Takanashi K, Yakushiji K (2008) J Appl Phys 103:093539

    Article  Google Scholar 

  30. Igarashi H, Okazaki K (1976) J Am Ceram Soc 59:371–372

    Article  Google Scholar 

  31. Tane M, Hyun SK, Nakajima H (2006) Scr Mater 54:545–552

    Article  CAS  Google Scholar 

  32. Kerner EH (1956) Proc Phys Soc London B 69:808–813

    Article  Google Scholar 

  33. Schapery RA (1968) J Comp Mater 2:380–404

    Article  Google Scholar 

  34. Dillon CP (1995) Corrosion resistance of stainless steels. Marcel Dekker, New York, p 258

    Google Scholar 

  35. Seah KHW (1993) Corros Sci 34:1841–1851

    Article  CAS  Google Scholar 

  36. Fossati A, Borgioli F, Galvaneto E, Bacci T (2006) Corros Sci 48:1513–1527

    Article  CAS  Google Scholar 

  37. Di Schino A, Barteri M, Kenny JM (2003) J Mater Sci 38:4725–4733

    Article  Google Scholar 

  38. Rechsteiner A, Speidel M (1997) Proceedings of 1st European stainless steel conference, vol 2, Florence, p107

    Google Scholar 

  39. Alvarez K, Hyun SK, Tsuchiya H, Fujimoto S, Nakajima H (2008) Corros Sci 50:183–193

    Article  CAS  Google Scholar 

  40. Ernest P, Laycock NJ, Moayed MH, Newman RC (1997) Corros Sci 39:1133–1136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Nakajima, H., Nakajima, H. (2013). Various Physical and Chemical Properties of Lotus Metals. In: Porous Metals with Directional Pores. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54017-5_8

Download citation

Publish with us

Policies and ethics