Skip to main content

Fabrication Methods of Porous Metals with Directional Pores

  • Chapter
  • First Online:
Porous Metals with Directional Pores
  • 910 Accesses

Abstract

Porous metals with directional pores were investigated fromlong time ago fromthe viewpoint to elucidate solidification or casting defects. In 1980s Shapovalov et al. indicated some applicability porous metals with directional pores fabricated through gasar process using high-pressure hydrogen. Then, Nakajima et al. carried out systematic investigations using various casting techniques such as mold casting technique, continuous zone melting technique, and continuous casting technique. The latter is the most superior to control pore size and porosity and is the most suitable for fabricating long-sized casting slabs. To overcome technical difficulty of use of high-pressure hydrogen, very simple fabrication method was invented recently by adding only gas-forming compounds into melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalmers B (1959) Sci Am 200:114–122

    Article  Google Scholar 

  2. Imabayashi M, Ichimura M, Kanno Y (1983) Trans JIM 24:93–100

    CAS  Google Scholar 

  3. Svensson I, Fredriksson HS (1980). In: Proceedings of international conference organized by the applied metallurgy and metals tech group of TMS, University of Warwick, pp. 376–380

    Google Scholar 

  4. Knacke O, Probst H, Wernekinck J (1979) Z Metallkde 70:1–6

    CAS  Google Scholar 

  5. Bioko LV, Shapovalov VL, Chernykh EA (1991) Metallurgiya 346:78–81

    Google Scholar 

  6. Hyun SK, Shiota Y, Murakami K, Nakajima H (1999) In: Koiwa M, Otsuka K, Miyazaki T (eds) Proceedings of international conference on solid-solid phase transformations ’99 (JIMIC-3), Japan Inst Metals, Kyoto, pp. 341–344

    Google Scholar 

  7. Nakajima H, Hyun SK, Ohashi K, Ota K, Murakami K (2001) Colloids Surf A:Physicochem Eng Aspects 197:209–214

    Article  Google Scholar 

  8. Nakajima H (2001) Mater Trans 42:1827–1829

    Article  CAS  Google Scholar 

  9. Shapovalov VI (1994) MRS Bull XIX:24–28

    Google Scholar 

  10. Hyun SK, Murakami K, Nakajima H (2001) Mater Sci Eng A 299:241–248

    Article  Google Scholar 

  11. Smith DP (1947) Hydrogen in metals. The University of Chicago Press, Chicago, p 34

    Google Scholar 

  12. Reed-Hill RE (1964) Physical metallurgy principles. D.Van Nostrand Company Inc, Princeton, p 393

    Google Scholar 

  13. Massalski TB (1986) Binary alloy phase diagram. American Society for Metals, Metals Park, p 1079

    Google Scholar 

  14. Levinsky Y (1997) Pressure dependent phase diagrams of binary alloys. ASM International, Materials Park, p.693

    Google Scholar 

  15. Satir-Kolorz AH, Feichtinger HK (1991) Z Metallkde 82:689–697

    CAS  Google Scholar 

  16. Hyun SK, Nakajima H (2002) Mater Trans 43:526–531

    Article  CAS  Google Scholar 

  17. Nakahata T, Nakajima H (2005) Mater Trans 46:587–592

    Article  CAS  Google Scholar 

  18. Ikeda T, Nakajima H (2002) Japan Foundry Eng Soc 74:812–816

    CAS  Google Scholar 

  19. Hyun SK, Nakajima H (2003) Mater Lett 57:3149–3154

    Article  CAS  Google Scholar 

  20. Ikeda T, Tsukamoto M, Nakajima H (2002) Mater Trans 43:2678–2684

    Article  CAS  Google Scholar 

  21. Nakajima H, Ikeda T, Hyun SK (2003) In: Banhart J, Fleck A (eds) Cellular metals: manufacture, properties, applications. MIT, Berlin, pp 191–202

    Google Scholar 

  22. Nakajima H, Ikeda T, Hyun CK (2004) Adv Eng Mater 6:377–384

    Article  CAS  Google Scholar 

  23. Ikeda T, Aoki T, Nakajima H (2005) Metall Mater Trans A 36A:77–86

    Article  CAS  Google Scholar 

  24. Park JS, Hyun SK, Suzuki S, Nakajima H (2007) Acta Mater 55:5646–5654

    Article  CAS  Google Scholar 

  25. Campbell J (1991) Castings. Butterworth-Heinemann, Oxford

    Google Scholar 

  26. Fisher JC (1948) J Appl Phys 19:1062–1067

    Article  Google Scholar 

  27. Flemings MC (1974) Solidification processing. McGraw-Hill, New York

    Google Scholar 

  28. Chalmers B (1964) Principles of solidification. Wiley, New York

    Google Scholar 

  29. Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Chapman & Hall, London

    Book  Google Scholar 

  30. Fromm E, Gebhardt E (1976) Gases and carbon in metals. Springer, Berlin

    Google Scholar 

  31. Wright JH, Hocking MG (1972) Metall Trans 3:1749–1753

    Article  CAS  Google Scholar 

  32. Nakajima H, Ide T (2008) Metall Mater Trans A 39A:390–394

    Article  CAS  Google Scholar 

  33. Nakajima H, Ide T (2007) Method for manufacturing porous body. PCT/JP2007/062769 (patent pending)

    Google Scholar 

  34. Fredriksson H, Akerlind U (2006) Materials processing during casting. Wiley, Chichester, pp 141–142

    Book  Google Scholar 

  35. Kim SY, Park JS, Nakajima H (2009) Metall Mater Trans A 40A:937–942

    Article  CAS  Google Scholar 

  36. Makaya A, Fredriksson H (2005) Mater Sci Eng A 413A–414A:533–537

    Google Scholar 

  37. Wada T, Ide T, Nakajima H (2009) Metall Mater Trans A 40A:3204–3209

    Article  CAS  Google Scholar 

  38. Murray P, White J (1955) Trans Br Ceram Soc 54:204–237

    CAS  Google Scholar 

  39. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) Acta Metall 1:428–437

    Article  CAS  Google Scholar 

  40. Kissinger HE (1957) Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  41. Nakajima H, Ide T (2012) In: Proceedings of cellular materials (Cellmat2012), Deutsche Gesellschaft fur Materialskunde e.V, pp. 1–4

    Google Scholar 

  42. Suematsu T, Hyun SK, Nakajima H (2004) J Japan Inst Metals 68:257–261

    Article  CAS  Google Scholar 

  43. Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, 5th edn. Pergamon, Oxford

    Google Scholar 

  44. Elliott JF, Gleiser M, Ramakrishna V (1963) Thermochemistry for steelmaking, vol 1. Addition-Wesley, New York, pp 161–215

    Google Scholar 

  45. Onishi H, Ueno S, Hyun SK, Nakajima H (2009) Metall Mater Trans A 40A:438–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Nakajima, H., Nakajima, H. (2013). Fabrication Methods of Porous Metals with Directional Pores. In: Porous Metals with Directional Pores. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54017-5_3

Download citation

Publish with us

Policies and ethics