Advertisement

Human-Specific Changes in Sialic Acid Biology

  • Toshiyuki Hayakawa
  • Ajit Varki
Chapter
Part of the Primatology Monographs book series (PrimMono)

Abstract

Sialic acids are components of cell-surface glycans and play important roles in cell–cell communication and host–pathogen interaction. More than 55 genes, encoding receptors, enzymes, and transporters, are known to be involved in sialic acid biology. Nearly 10 years of research have revealed that several of these genes show human-specific changes in genome structure, expression, or function. In this chapter, we introduce these human-specific changes and their possible impact on the human evolution. Also, we give an overview of the evolution of sialic acid biology in primates. The discovery of human-specific changes in sialic acid biology is one step toward explaining the genetic basis of human uniqueness, one of the major activities in primatology, contributing to answering a transdisciplinary question: What makes us human?

Keywords

Sialic Acid Gene Conversion Sialic Acid Residue Human Lineage Paired Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CMAH

CMP-N-acetylneuraminic acid hydroxylase

CMP-Kdn

Cytidine monophospho-2-keto-3 deoxynonulosonic acid

CMP-Neu5Ac

Cytidine monophospho-N-acetylneuraminic acid

CMP-Neu5Gc

Cytidine monophospho-N-glycolylneuraminic acid

Gal

Galactose

GlcNAc

N-Acetylglucosamine

ITIM

Immunoreceptor tyrosine-based inhibitory motif

Kdn

2-Keto-3 deoxynonulosonic acid

Neu5Ac

N-Acetylneuraminic acid

Neu5Gc

N-Glycolylneuraminic acid

Siglec

Sialic acid-binding immunoglobulin superfamily lectin

References

  1. Altheide TK, Hayakawa T, Mikkelsen TS, Diaz S, Varki N, Varki A (2006) System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J Biol Chem 281:25689–25702PubMedCrossRefGoogle Scholar
  2. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469PubMedCrossRefGoogle Scholar
  3. Angata T, Varki NM, Varki A (2001) A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276:40282–40287PubMedGoogle Scholar
  4. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474PubMedCrossRefGoogle Scholar
  5. Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101:13251–13256PubMedCrossRefGoogle Scholar
  6. Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973PubMedCrossRefGoogle Scholar
  7. Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–846PubMedCrossRefGoogle Scholar
  8. Avril T, Wagner ER, Willison HJ, Crocker PR (2006) Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 74:4133–4141PubMedCrossRefGoogle Scholar
  9. Baum J, Pinder M, Conway DJ (2003) Erythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia. Infect Immun 71:1856–1863PubMedCrossRefGoogle Scholar
  10. Beyer TA, Rearick JI, Paulson JC, Prieels JP, Sadler JE, Hill RL (1979) Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J Biol Chem 254:12531–12534PubMedGoogle Scholar
  11. Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature (Lond) 432:345–352CrossRefGoogle Scholar
  12. Brinkman-Van der Linden EC, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A (2000) Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J Biol Chem 275:8633–8640PubMedCrossRefGoogle Scholar
  13. Brinkman-Van der Linden EC, Hurtado-Ziola N, Hayakawa T, Wiggleton L, Benirschke K, Varki A, Varki N (2007) Human-specific expression of Siglec-6 in the placenta. Glycobiology 17:922–931PubMedCrossRefGoogle Scholar
  14. Byres E, Paton AW, Paton JC, Lofling JC, Smith DF, Wilce MC, Talbot UM, Chong DC, Yu H, Huang S, Chen X, Varki NM, Varki A, Rossjohn J, Beddoe T (2008) Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature (Lond) 456:648–652CrossRefGoogle Scholar
  15. Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035PubMedCrossRefGoogle Scholar
  16. Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T (2007) N-Glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–12858PubMedCrossRefGoogle Scholar
  17. Camus D, Hadley TJ (1985) A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230:553–556PubMedCrossRefGoogle Scholar
  18. Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38:2303–2315PubMedCrossRefGoogle Scholar
  19. Cao H, de Bono B, Belov K, Wong ES, Trowsdale J, Barrow AD (2009) Comparative genomics indicates the mammalian CD33r Siglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 61:401–417PubMedCrossRefGoogle Scholar
  20. Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V (2009a) Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206:1691–1699PubMedCrossRefGoogle Scholar
  21. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009b) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336PubMedCrossRefGoogle Scholar
  22. Carroll SB (2003) Genetics and the making of Homo sapiens. Nature (Lond) 422:849–857CrossRefGoogle Scholar
  23. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo–Pan divergence. Proc Natl Acad Sci USA 95:11751–11756PubMedCrossRefGoogle Scholar
  24. Chou HH, Hayakawa T, Diaz S, Krings M, Indriati E, Leakey M, Paabo S, Satta Y, Takahata N, Varki A (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci USA 99:11736–11741PubMedCrossRefGoogle Scholar
  25. Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437PubMedCrossRefGoogle Scholar
  26. Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342PubMedCrossRefGoogle Scholar
  27. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266PubMedCrossRefGoogle Scholar
  28. Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R, Doxiadis GM, Bontrop RE, Paabo S (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343PubMedCrossRefGoogle Scholar
  29. Gagneux P, Cheriyan M, Hurtado-Ziola N, van der Linden EC, Anderson D, McClure H, Varki A, Varki NM (2003) Human-specific regulation of alpha 2-6-linked sialic acids. J Biol Chem 278:48245–48250PubMedCrossRefGoogle Scholar
  30. Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP (2006) Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature (Lond) 440:242–245CrossRefGoogle Scholar
  31. Gottschalk A (1960) The chemistry and biology of sialic acids and related substance. Cambridge University Press, CambridgeGoogle Scholar
  32. Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573PubMedCrossRefGoogle Scholar
  33. Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR (2001) Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97:288–296PubMedCrossRefGoogle Scholar
  34. Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N (2001) Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci USA 98:11399–11404PubMedCrossRefGoogle Scholar
  35. Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A (2005) A human-specific gene in microglia. Science 309:1693PubMedGoogle Scholar
  36. Hayakawa T, Aki I, Varki A, Satta Y, Takahata N (2006) Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 172:1139–1146PubMedCrossRefGoogle Scholar
  37. Hedlund M, Tangvoranuntakul P, Takematsu H, Long JM, Housley GD, Kozutsumi Y, Suzuki A, Wynshaw-Boris A, Ryan AF, Gallo RL, Varki N, Varki A (2007) N-Glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol Cell Biol 27:4340–4346PubMedCrossRefGoogle Scholar
  38. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature (Lond) 409:860–921CrossRefGoogle Scholar
  39. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature (Lond) 431:931–945CrossRefGoogle Scholar
  40. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem 273:15866–15871PubMedCrossRefGoogle Scholar
  41. Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49:1213–1225PubMedCrossRefGoogle Scholar
  42. Kawano T, Kozutsumi Y, Kawasaki T, Suzuki A (1994) Biosynthesis of N-glycolylneuraminic acid-containing glycoconjugates. Purification and characterization of the key enzyme of the cytidine monophospho-N-acetylneuraminic acid hydroxylation system. J Biol Chem 269:9024–9029PubMedGoogle Scholar
  43. Kawano T, Koyama S, Takematsu H, Kozutsumi Y, Kawasaki H, Kawashima S, Kawasaki T, Suzuki A (1995) Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem 270:16458–16463PubMedCrossRefGoogle Scholar
  44. Keeling MR, Roberts JR (1972) The chimpanzee. In: Bourne GH (ed) Histology, reproduction and restraint, vol 5. Karger, New York, pp 143–150Google Scholar
  45. Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do HH, Weiss G, Enard W, Heissig F, Arendt T, Nieselt-Struwe K, Eichler EE, Paabo S (2004a) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473PubMedCrossRefGoogle Scholar
  46. Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, Wirkner U, Ansorge W, Paabo S (2004b) A neutral model of transcriptome evolution. PLoS Biol 2:E132PubMedCrossRefGoogle Scholar
  47. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Paabo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–1854PubMedCrossRefGoogle Scholar
  48. Khaitovich P, Enard W, Lachmann M, Paabo S (2006) Evolution of primate gene expression. Nat Rev Genet 7:693–702PubMedCrossRefGoogle Scholar
  49. Klein RG (1999) The human career: human biology and cultural origins. The University of Chicago, ChicagoGoogle Scholar
  50. Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture 21:95–112PubMedGoogle Scholar
  51. Martin LT, Marth JD, Varki A, Varki NM (2002) Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J Biol Chem 277:32930–32938PubMedCrossRefGoogle Scholar
  52. Martin MJ, Rayner JC, Gagneux P, Barnwell JW, Varki A (2005) Evolution of human–chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci USA 102:12819–12824PubMedCrossRefGoogle Scholar
  53. McHenry HM (1994) Tempo and mode in human evolution. Proc Natl Acad Sci USA 91:6780–6786PubMedCrossRefGoogle Scholar
  54. Mikami T, Kashiwagi M, Tsuchihashi K, Daino T, Akino T, Gasa S (1998) Further characterization of equine brain gangliosides: the presence of GM3 having N-glycolyl neuraminic acid in the central nervous system. J Biochem 123:487–491PubMedGoogle Scholar
  55. Monteiro VG, Lobato CS, Silva AR, Medina DV, de Oliveira MA, Seabra SH, de Souza W, DaMatta RA (2005) Increased association of Trypanosoma cruzi with sialoadhesin-positive mice macrophages. Parasitol Res 97:380–385PubMedCrossRefGoogle Scholar
  56. Mounzih K, Qiu J, Ewart-Toland A, Chehab FF (1998) Leptin is not necessary for gestation and parturition but regulates maternal nutrition via a leptin resistance state. Endocrinology 139:5259–5262PubMedCrossRefGoogle Scholar
  57. Muchmore EA, Diaz S, Varki A (1998) A structural difference between the cell surfaces of humans and the great apes. Am J Phys Anthropol 107:187–198PubMedCrossRefGoogle Scholar
  58. Murphy BR, Hall SL, Crowe J, Collins P, Subbarao K, Connors M, London WT, Chanock R (1992) In: Corwin J, Landon JC (eds) Chimpanzee conservation and public health. Diagnon/Bioqual, Rockville, MD, pp 21–27Google Scholar
  59. Nakao T, Kon K, Ando S, Hirabayashi Y (1991) A NeuGc-containing trisialoganglioside of bovine brain. Biochim Biophys Acta 1086:305–309PubMedGoogle Scholar
  60. Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A (2006) Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci USA 103:7765–7770PubMedCrossRefGoogle Scholar
  61. Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei MG, Crocker PR (1999) Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274:34089–34095PubMedCrossRefGoogle Scholar
  62. Novembre FJ, Saucier M, Anderson DC, Klumpp SA, O’Neil SP, Brown CR 2nd, Hart CE, Guenthner PC, Swenson RB, McClure HM (1997) Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J Virol 71:4086–4091PubMedGoogle Scholar
  63. Nuamah MA, Yura S, Sagawa N, Itoh H, Mise H, Korita D, Kakui K, Takemura M, Ogawa Y, Nakao K, Fujii S (2004) Significant increase in maternal plasma leptin concentration in induced delivery: a possible contribution of pro-inflammatory cytokines to placental leptin secretion. Endocr J 51:177–187PubMedCrossRefGoogle Scholar
  64. Olson MV, Varki A (2003) Sequencing the chimpanzee genome: insights into human evolution and disease. Nat Rev Genet 4:20–28PubMedCrossRefGoogle Scholar
  65. Patel N, Brinkman-Van der Linden EC, Altmann SW, Gish K, Balasubramanian S, Timans JC, Peterson D, Bell MP, Bazan JF, Varki A, Kastelein RA (1999) OB-BP1/Siglec-6: a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 274:22729–22738PubMedCrossRefGoogle Scholar
  66. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC (2004) A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 200:35–46PubMedCrossRefGoogle Scholar
  67. Preuss TM, Caceres M, Oldham MC, Geschwind DH (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5:850–860PubMedCrossRefGoogle Scholar
  68. Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234CrossRefGoogle Scholar
  69. Rich SM, Leendertz FH, Xu G, Lebreton M, Djoko CF, Aminake MN, Takang EE, Diffo JL, Pike BL, Rosenthal BM, Formenty P, Boesch C, Ayala FJ, Wolfe ND (2009) The origin of malignant malaria. Proc Natl Acad Sci USA 106(35):14902–14907PubMedCrossRefGoogle Scholar
  70. Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373PubMedCrossRefGoogle Scholar
  71. Rosenberg A, Schengrund C (1976) Biological roles of sialic acids. Plenum, New York and LondonCrossRefGoogle Scholar
  72. Salminen A, Kaarniranta K (2009) Siglec receptors and hiding plaques in Alzheimer’s disease. J Mol Med 87:697–701PubMedCrossRefGoogle Scholar
  73. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature (Lond) 459:523–527CrossRefGoogle Scholar
  74. Schauer R (1982) Sialic acids: chemistry, metabolism and function. Springer, New YorkCrossRefGoogle Scholar
  75. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499PubMedCrossRefGoogle Scholar
  76. Schlenzka W, Shaw L, Kelm S, Schmidt CL, Bill E, Trautwein AX, Lottspeich F, Schauer R (1996) CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron–sulphur protein to be described in Eukarya. FEBS Lett 385:197–200PubMedCrossRefGoogle Scholar
  77. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99:5267–5270PubMedCrossRefGoogle Scholar
  78. Smit H, Gaastra W, Kamerling JP, Vliegenthart JF, de Graaf FK (1984) Isolation and structural characterization of the equine erythrocyte receptor for enterotoxigenic Escherichia coli K99 fimbrial adhesin. Infect Immun 46:578–584PubMedGoogle Scholar
  79. Snyder MH, London WT, Tierney EL, Maassab HF, Murphy BR (1986) Restricted replication of a cold-adapted reassortant influenza A virus in the lower respiratory tract of chimpanzees. J Infect Dis 154:370–371PubMedCrossRefGoogle Scholar
  80. Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, Kelso J, Nickel B, Dannemann M, Bahn S, Webster MJ, Weickert CS, Lachmann M, Paabo S, Khaitovich P (2009) Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA 106:5743–5748PubMedCrossRefGoogle Scholar
  81. Sonnenburg JL, Altheide TK, Varki A (2004) A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14:339–346PubMedCrossRefGoogle Scholar
  82. Subbarao K, Webster RG, Kawaoka Y, Murphy BR (1995) Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses? Virus Res 39:105–118PubMedCrossRefGoogle Scholar
  83. Tettamanti G, Bertona L, Berra B, Zambotti V (1965) Glycolyl-neuraminic acid in ox brain gangliosides. Nature (Lond) 206:192CrossRefGoogle Scholar
  84. The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature (Lond) 437:69–87CrossRefGoogle Scholar
  85. Tomita M, Furthmayr H, Marchesi VT (1978) Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence. Biochemistry 17:4756–4770PubMedCrossRefGoogle Scholar
  86. Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330–1349PubMedCrossRefGoogle Scholar
  87. Van Valen L (1974) Two modes of evolution. Nature (Lond) 252:298–300CrossRefGoogle Scholar
  88. Varki A (2001) Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33:54–69CrossRefGoogle Scholar
  89. Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature (Lond) 446:1023–1029CrossRefGoogle Scholar
  90. Varki A (2009) Multiple changes in sialic acid biology during human evolution. Glycoconj J 26:231–245PubMedCrossRefGoogle Scholar
  91. Varki A, Altheide TK (2005) Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15:1746–1758PubMedCrossRefGoogle Scholar
  92. Varki A, Angata T (2006) Siglecs: the major subfamily of I-type lectins. Glycobiology 16:1R–27RPubMedCrossRefGoogle Scholar
  93. Varki A, Gagneux P (2009) Human-specific evolution of sialic acid targets: explaining the malignant malaria mystery? Proc Natl Acad Sci USA 106:14739–14740PubMedCrossRefGoogle Scholar
  94. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153PubMedCrossRefGoogle Scholar
  95. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedGoogle Scholar
  96. Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC (1987) Primary structure of beta-galactoside alpha 2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem 262:17735–17743PubMedGoogle Scholar
  97. White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, Howell FC (2003) Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature (Lond) 423:742–747CrossRefGoogle Scholar
  98. Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, Rumer KK, Haimov-Kochman R, Yeh RF, Overgaard MT, Varki A, Oxvig C, Fisher SJ (2009) Severe preeclampsia-related changes in gene expression at the maternal–fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology 150:452–462PubMedCrossRefGoogle Scholar
  99. Wishcamper CA, Coffin JD, Lurie DI (2001) Lack of the protein tyrosine phosphatase SHP-1 results in decreased numbers of glia within the motheaten (me/me) mouse brain. J Comp Neurol 441:118–133PubMedCrossRefGoogle Scholar
  100. Wood B (2002) Hominid revelations from Chad. Nature (Lond) 418:133–135CrossRefGoogle Scholar
  101. Wood B, Collard M (1999) The human genus. Science 284:65–71PubMedCrossRefGoogle Scholar
  102. Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19:841–846PubMedCrossRefGoogle Scholar
  103. Yousef GM, Ordon MH, Foussias G, Diamandis EP (2002) Genomic organization of the siglec gene locus on chromosome 19q13.4 and cloning of two new siglec pseudogenes. Gene (Amst) 286:259–270CrossRefGoogle Scholar
  104. Zhang JQ, Nicoll G, Jones C, Crocker PR (2000) Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275:22121–22126PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Center for Human Evolution Modeling Research, Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.Center for Academic Research and Training in Anthropogeny, Glycobiology Research and Training Center, Departments of Medicine and Cellular & Molecular MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations