Skip to main content

Polymorphic Color Vision in Primates: Evolutionary Considerations

  • Chapter
  • First Online:

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Color provides a reliable cue for object detection and identification during various behaviors such as foraging, mate choice, predator avoidance, and navigation. The total number of colors that a visual system can discriminate is largely dependent on the number of different spectral types of cone opsins present in the retina and the spectral separations among them. Thus, opsins provide an excellent model system to study evolutionary interconnections at genetic, phenotypic, and behavioral levels. Primates have evolved a unique ability for three-dimensional color vision (trichromacy) from the two-dimensional color vision (dichromacy) present in the majority of other mammals. This development was accomplished via allelic differentiation (e.g., most New World monkeys) or gene duplication (e.g., Old World primates) of the middle to long wavelength-sensitive (M/LWS, or red–green) opsin gene. However, questions remain regarding the behavioral adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive color vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different color vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioral context. In this chapter, we summarize recent findings on color vision evolution in primates and other vertebrates and introduce our genetic and behavioral study of vision–behavior interrelationships in free-ranging sympatric capuchin and spider monkey populations in Costa Rica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

λmax :

Wavelength of maximal absorbance

cDNA:

Complementary DNA

ERG:

Electroretinogram

LCR:

Locus control region

M/LWS:

Middle to long wavelength-sensitive

MSP:

Microspectrophotometry

PCR:

Polymerase chain reaction

RH1:

Rhodopsin

RH2:

Rhodopsin-like

SWS1:

Short wavelength-sensitive type 1

SWS2:

Short wavelength-sensitive type 2

References

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res 19:711–777

    Article  PubMed  CAS  Google Scholar 

  • Allen G (1879) The color sense: its origin and development. Trubner, London

    Google Scholar 

  • Araujo AC, Didonet JJ, Araujo CS et al (2008) Color vision in the black howler monkey (Alouatta caraya). Vis Neurosci 25:243–248

    Article  PubMed  Google Scholar 

  • Aureli F, Schaffner CM (2008) Spider monkeys: social structure, social relationships and social interactions. In: Campbell C (ed) Spider monkeys: behavior ecology & evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 236–265

    Google Scholar 

  • Boissinot S, Tan Y, Shyue SK et al (1998) Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proc Natl Acad Sci USA 95:13749–13754

    Article  PubMed  CAS  Google Scholar 

  • Caine NG (2002) Seeing red: consequences of individual differences in color vision in callitrichid primates. In: Miller LE (ed) Eat or be eaten. Cambridge University Press, Cambridge, pp 58–73

    Chapter  Google Scholar 

  • Caine NG, Mundy NI (2000) Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc R Soc Lond B 267:439–444

    Article  CAS  Google Scholar 

  • Caine NG, Surridge AK, Mundy NI (2003) Dichromatic and trichromatic Callithrix geoffroyi differ in relative foraging ability for red-green color-camouflaged and non-camouflaged food. Int J Primatol 24:1163–1175

    Article  Google Scholar 

  • Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate color vision. Biol Lett 2:217–221

    Article  PubMed  Google Scholar 

  • Chapman CA (1990) Association patterns of spider monkeys: the influence of ecology and sex on social organization. Behav Ecol Sociobiol 26:409–414

    Article  Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y et al (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163:663–675

    PubMed  CAS  Google Scholar 

  • Collin SP, Knight MA, Davies WL et al (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865

    Article  PubMed  CAS  Google Scholar 

  • Collin SP, Davies WL, Hart NS et al (2009) The evolution of early vertebrate photoreceptors. Philos Trans R Soc B 364:2925–2940

    Article  CAS  Google Scholar 

  • Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Davies WL, Carvalho LS, Cowing JA et al (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 17:R161–R163

    Article  PubMed  CAS  Google Scholar 

  • Davies WL, Collin SP, Hunt DM (2009) Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Mol Biol Evol 26:1803–1809

    Article  PubMed  CAS  Google Scholar 

  • De Araujo MF, Lima EM, Pessoa VF (2006) Modeling dichromatic and trichromatic sensitivity to the color properties of fruits eaten by squirrel monkeys (Saimiri sciureus). Am J Primatol 68:1129–1137

    Article  PubMed  Google Scholar 

  • Deeb SS (2006) Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev 16:301–307

    Article  PubMed  CAS  Google Scholar 

  • Dominy NJ (2004) Color as an indicator of food quality to anthropoid primates: ecological evidence and an evolutionary scenario. In: Ross C, Kay RF (eds) Anthropoid origins. Kluwer, New York, pp 599–628

    Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature (Lond) 410:363–366

    Article  CAS  Google Scholar 

  • Dominy NJ, Garber PA, Bicca-Marques JC et al (2003a) Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Anim Behav 66:829–837

    Article  Google Scholar 

  • Dominy NJ, Svenning JC, Li WH (2003b) Historical contingency in the evolution of primate color vision. J Hum Evol 44:25–45

    Article  PubMed  Google Scholar 

  • Drummond-Borg M, Deeb SS, Motulsky AG (1989) Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci USA 86:983–987

    Article  PubMed  CAS  Google Scholar 

  • Dulai KS, Bowmaker JK, Mollon JD et al (1994) Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys. Vision Res 34:2483–2491

    Article  PubMed  CAS  Google Scholar 

  • Dulai KS, von Dornum M, Mollon JD et al (1999) The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res 9:629–638

    PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  PubMed  CAS  Google Scholar 

  • Fedigan LM (2003) Impact of male takeovers on infant deaths, births and conceptions in Cebus capucinus at Santa Rosa, Costa Rica. Int J Primatol 24:723–741

    Article  Google Scholar 

  • Fedigan LM, Jack K (2001) Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns. Int J Primatol 22:689–713

    Article  Google Scholar 

  • Fedigan LM, Jack K (2004) The demographic and reproductive context of male replacements in Cebus capucinus. Behaviour 141:755–775

    Article  Google Scholar 

  • Fernandez AA, Morris MR (2007) Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 170:10–20

    Article  PubMed  Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2dth edn. Academic, San Diego

    Google Scholar 

  • Foster DH, Nascimento SM (1994) Relational colour constancy from invariant cone-excitation ratios. Proc R Soc Lond B 257:115–121

    Article  CAS  Google Scholar 

  • Fragaszy DM, Visalberghi E, Fedigan LM (2004) The complete capuchin: the biology of the genus Cebus. Cambridge University Press, Cambridge

    Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:281–322

    Article  PubMed  CAS  Google Scholar 

  • Govardovskii VI (1983) On the role of oil drops in colour vision. Vision Res 23:1739–1740

    Article  PubMed  CAS  Google Scholar 

  • Hanazawa A, Mikami A, Sulistyo Angelika P et al (2001) Electroretinogram analysis of relative spectral sensitivity in genetically identified dichromatic macaques. Proc Natl Acad Sci USA 98:8124–8127

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Motulsky AG, Deeb SS (1999) Position of a ‘green-red’ hybrid gene in the visual pigment array determines colour-vision phenotype. Nat Genet 22:90–93

    Article  PubMed  CAS  Google Scholar 

  • Heesy CP, Ross CF (2001) Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. J Hum Evol 40:111–149

    Article  PubMed  CAS  Google Scholar 

  • Heesy CP, Ross CF, Demes B (2007) Oculomotor stability and the functions of the postorbital bar and septum. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 257–283

    Chapter  Google Scholar 

  • Hiramatsu C, Radlwimmer FB, Yokoyama S et al (2004) Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233. Vision Res 44:2225–2231

    PubMed  Google Scholar 

  • Hiramatsu C, Tsutsui T, Matsumoto Y et al (2005) Color-vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. Am J Primatol 67:447–461

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One 3:e3356

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F et al (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426

    Article  Google Scholar 

  • Hiwatashi T, Okabe Y, Tsutsui T et al (2010) An explicit signature of balancing selection for color-vision variation in new world monkeys. Mol Biol Evol 27:453–464

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hunt DM, Dulai KS, Cowing JA et al (1998) Molecular evolution of trichromacy in primates. Vision Res 38:3299–3306

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson RE, Hunt DM, Bowmaker JK et al (1992) Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B 247:145–154

    Article  CAS  Google Scholar 

  • Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (1996) Primate photopigments and primate color vision. Proc Natl Acad Sci USA 93:577–581

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (1998) A perspective on color vision in platyrrhine monkeys. Vision Res 38:3307–3313

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (1999) Vision and behavior in primates. In: Archer SN, Djamgoz MBA, Loew ER et al (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 629–650

    Google Scholar 

  • Jacobs GH (2007) New World monkeys and color. Int J Primatol 28:729–759

    Article  Google Scholar 

  • Jacobs GH, Deegan JF II (2001) Photopigments and colour vision in New World monkeys from the family Atelidae. Proc R Soc Lond B 268:695–702

    Article  CAS  Google Scholar 

  • Jacobs GH, Deegan JF II (2003) Cone pigment variations in four genera of new world monkeys. Vision Res 43:227–236

    Article  PubMed  Google Scholar 

  • Jacobs GH, Deegan JF II (2005) Polymorphic New World monkeys with more than three M/L cone types. J Opt Soc Am A 22:2072–2080

    Article  Google Scholar 

  • Jacobs GH, Williams GA (2001) The prevalence of defective color vision in Old World monkeys and apes. Color Res Appl 26(suppl):S123–S127

    Article  Google Scholar 

  • Jacobs GH, Neitz M, Deegan JF et al (1996a) Trichromatic colour vision in New World monkeys. Nature (Lond) 382:156–158

    Article  CAS  Google Scholar 

  • Jacobs GH, Neitz M, Neitz J (1996b) Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc R Soc Lond B 263:705–710

    Article  CAS  Google Scholar 

  • Jacobs GH, Deegan JF II, Tan Y et al (2002) Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res 42:11–18

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH, Williams GA, Cahill H et al (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315:1723–1725

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (2002) Tropical dry forest: Area de Conservacion Guanacaste, northwestern Costa Rica. In: Perrow M, Davey A (eds) Handbook of ecological restoration: restoration in practice. Cambridge University Press, Cambridge, pp 559–583

    Google Scholar 

  • Kawamura S, Kubotera N (2003) Absorption spectra of reconstituted visual pigments of a nocturnal prosimian, Otolemur crassicaudatus. Gene (Amst) 321:131–135

    Article  CAS  Google Scholar 

  • Kawamura S, Kubotera N (2004) Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. J Mol Evol 58:314–321

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Hirai M, Takenaka O et al (2001) Genomic and spectral analyses of long to middle wavelength-sensitive visual pigments of common marmoset (Callithrix jacchus). Gene (Amst) 269:45–51

    Article  CAS  Google Scholar 

  • Kawamura S, Takenaka N, Hiramatsu C et al (2002) Y-chromosomal red-green opsin genes of nocturnal New World monkey. FEBS Lett 530:70–72

    Article  PubMed  CAS  Google Scholar 

  • Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision: behavioural tests and physiological concepts. Biol Rev 78:81–118

    Article  PubMed  Google Scholar 

  • Levine JS, MacNichol EF Jr (1982) Color vision in fishes. Sci Am 246:140–149

    Article  Google Scholar 

  • Lucas PW, Darvell BW, Lee PKD et al (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol 69:139–154

    Article  PubMed  CAS  Google Scholar 

  • Lucas PW, Dominy NJ, Riba-Hernández P et al (2003) Evolution and function of routine trichromatic vision in primates. Evolution 57:2636–2643

    PubMed  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, Oxford

    Google Scholar 

  • MacLeod DI, Boynton RM (1979) Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am 69:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Martin PR (1998) Colour processing in the primate retina: recent progress. J Physiol 513(pt 3):631–638

    Article  PubMed  CAS  Google Scholar 

  • Maximov VV (2000) Environmental factors which may have led to the appearance of colour vision. Philos Trans R Soc B 355:1239–1242

    Article  CAS  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Anim Behav 73:205–214

    Article  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2008) Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behav Ecol Sociobiol 62:659–670

    Article  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C et al (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775

    Article  Google Scholar 

  • Melin AD, Fedigan LM, Young HC et al (2010) Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312

    Google Scholar 

  • Mollon JD (1989) “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol 146:21–38

    PubMed  CAS  Google Scholar 

  • Mollon JD, Bowmaker JK, Jacobs GH (1984) Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B 222:373–399

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Adam A, Mollon JD (1992) Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc R Soc Lond B 248:291–295

    Article  CAS  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, Chichester

    Google Scholar 

  • Mullen KT (1985) The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J Physiol 359:381–400

    PubMed  CAS  Google Scholar 

  • Nagao K, Takenaka N, Hirai M et al (2005) Coupling and decoupling of evolutionary mode between X- and Y-chromosomal red-green opsin genes in owl monkeys. Gene (Amst) 352:82–91

    Article  CAS  Google Scholar 

  • Nathans J (1987) Molecular biology of visual pigments. Annu Rev Neurosci 10:163–194

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Neitz M, Neitz J, Jacobs GH (1991) Spectral tuning of pigments underlying red-green color vision. Science 252:971–974

    Article  PubMed  CAS  Google Scholar 

  • Onishi A, Koike S, Ida M et al (1999) Dichromatism in macaque monkeys. Nature (Lond) 402:139–140

    CAS  Google Scholar 

  • Onishi A, Koike S, Ida-Hosonuma M et al (2002) Variations in long- and middle-wavelength-sensitive opsin gene loci in crab-eating monkeys. Vision Res 42:281–292

    Article  PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B 263:593–599

    Article  CAS  Google Scholar 

  • Parraga CA, Troscianko T, Tolhurst DJ (2002) Spatiochromatic properties of natural images and human vision. Curr Biol 12:483–487

    Article  PubMed  CAS  Google Scholar 

  • Perry GH, Martin RD, Verrelli BC (2007) Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol 24:1963–1970

    Article  PubMed  CAS  Google Scholar 

  • Pessoa DM, Araujo MF, Tomaz C et al (2003) Colour discrimination learning in black-handed tamarin (Saguinus midas niger). Primates 44:413–418

    Article  PubMed  Google Scholar 

  • Pokorny J, Shevell SK, Smith VC (1991) Colour appearance and colour constancy. In: Cronly-Dillon JR (ed) Vision and visual dysfunction, vol 6. Macmillan, London, pp 43–61

    Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res 38:3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (2001) Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc B 356:229–283

    Article  CAS  Google Scholar 

  • Riba-Hernández P, Stoner KE, Osorio D (2004) Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. J Exp Biol 207:2465–2470

    Article  PubMed  Google Scholar 

  • Robinson SR (1994) Early vertebrate color vision. Nature (Lond) 367:121

    Article  Google Scholar 

  • Saito A, Mikami A, Hasegawa T et al (2003) Behavioral evidence of color vision deficiency in a protanomalia chimpanzee (Pan troglodytes). Primates 44:171–176

    PubMed  Google Scholar 

  • Saito CA, da Silva Fiho M, Lee BB et al (2004) Alouatta trichromatic color vision: single-unit recording from retinal ganglion cells and microspectrophotometry. Invest Ophthalmol Vis Sci 45:E (abstract 4276)

    Google Scholar 

  • Saito A, Kawamura S, Mikami A et al (2005a) Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella). Am J Primatol 67:471–485

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Mikami A, Kawamura S et al (2005b) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–436

    Article  PubMed  Google Scholar 

  • Schneider H (2000) The current status of the New World monkey phylogeny. An Acad Bras Ci 72:165–172

    Article  CAS  Google Scholar 

  • Sharpe LT, Stockman A, Jagle H et al (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: Gegenfurtner KR, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge, pp 3–51

    Google Scholar 

  • Shyue SK, Hewett-Emmett D, Sperling HG et al (1995) Adaptive evolution of color vision genes in higher primates. Science 269:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Shyue SK, Boissinot S, Schneider H et al (1998) Molecular genetics of spectral tuning in New World monkey color vision. J Mol Evol 46:697–702

    Article  PubMed  CAS  Google Scholar 

  • Smallwood PM, Wang Y, Nathans J (2002) Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad Sci USA 99:1008–1011

    Article  PubMed  CAS  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2003a) Leaders of progressions in wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached tamarins (S. mystax), with emphasis on color vision and sex. Am J Primatol 61:145–157

    Article  PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2003b) The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol 206:3159–3165

    Article  PubMed  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK et al (2005) Factors affecting group spread within wild mixed-species troops of saddleback and mustached tamarins. Int J Primatol 26:337–355

    Article  Google Scholar 

  • Stoner KE, Riba-Hernández P, Lucas PW (2005) Comparative use of color vision for frugivory by sympatric species of platyrrhines. Am J Primatol 67:399–409

    Article  PubMed  Google Scholar 

  • Sumner P, Mollon JD (2000) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2003) Colors of primate pelage and skin: objective assessment of conspicuousness. Am J Primatol 59:67–91

    Article  PubMed  Google Scholar 

  • Surridge AK, Mundy NI (2002) Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in callitrichine primates. Mol Ecol 11:2157–2169

    Article  PubMed  CAS  Google Scholar 

  • Surridge AK, Smith AC, Buchanan-Smith HM et al (2002) Single-copy nuclear DNA sequences obtained from noninvasively collected primate feces. Am J Primatol 56:185–190

    Article  PubMed  CAS  Google Scholar 

  • Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Talebi MG, Pope TR, Vogel ER et al (2006) Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Mol Ecol 15:551–558

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Li WH (1999) Trichromatic vision in prosimians. Nature (Lond) 402:36

    Article  CAS  Google Scholar 

  • Tan Y, Yoder AD, Yamashita N et al (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci USA 102:14712–14716

    Article  PubMed  CAS  Google Scholar 

  • Terao K, Mikami A, Saito A et al (2005) Identification of a protanomalous chimpanzee by molecular genetic and electroretinogram analyses. Vision Res 45:1225–1235

    Article  PubMed  Google Scholar 

  • Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soule M (ed) Conservation biology: science of scarcity and diversity. Sinauer, Sunderland, pp 330–344

    Google Scholar 

  • Veilleux CC, Bolnick DA (2009) Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol 71:86–90

    Article  PubMed  CAS  Google Scholar 

  • Verrelli BC, Tishkoff SA (2004) Signatures of selection and gene conversion associated with human color vision variation. Am J Hum Genet 75:363–375

    Article  PubMed  CAS  Google Scholar 

  • Verrelli BC, Lewis CM Jr, Stone AC et al (2008) Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol Biol Evol 25:2735–2743

    Article  PubMed  CAS  Google Scholar 

  • Vogel ER, Neitz M, Dominy NJ (2007) Effect of color vision phenotype on the foraging of wild white-faced capuchins, Cebus capucinus. Behav Ecol 18:292–297

    Article  Google Scholar 

  • Vorobyev M (2004) Ecology and evolution of primate colour vision. Clin Exp Optom 87:230–238

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills

    Book  Google Scholar 

  • Wang Y, Macke JP, Merbs SL et al (1992) A locus control region adjacent to the human red and green visual pigment genes. Neuron 9:429–440

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Smallwood PM, Cowan M et al (1999) Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. Proc Natl Acad Sci USA 96:5251–5256

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Yamada ES, Marshak DW, Silveira LC et al (1998) Morphology of P and M retinal ganglion cells of the bush baby. Vision Res 38:3345–3352

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (2000a) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (2000b) Phylogenetic analysis and experimental approaches to study color vision in vertebrates. Methods Enzymol 315:312–325

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB (1998) The “five-sites” rule and the evolution of red and green color vision in mammals. Mol Biol Evol 15:560–567

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB (1999) The molecular genetics of red and green color vision in mammals. Genetics 153:919–932

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB (2001) The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158:1697–1710

    PubMed  CAS  Google Scholar 

  • Yokoyama R, Yokoyama S (1990) Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci USA 87:9315–9318

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179:2037–2043

    Article  PubMed  Google Scholar 

  • Zhou YH, Li WH (1996) Gene conversion and natural selection in the evolution of X-linked color vision genes in higher primates. Mol Biol Evol 13:780–783

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Blanco Segura, M.M. Chavarria, and other staff of the Área de Conservación Guanacaste for local support, and we are grateful to the Ministerio de Ambiente y Energía (MINAE) of Costa Rica for giving us permission to conduct our field study in Santa Rosa. We appreciate the help of E. Murillo Chacon, C. Sendall, K.M. Jack, S. Carnegie, L. Rebecchini, A.H. Korstjens, G. McCabe, and H. Young with collection of fecal samples and behavioral data and assistance in the field. Our field study was supported by Grants-in-Aid for Scientific Research A 19207018 and 22247036 from the Japan Society for the Promotion of Science (JSPS) and Grants-in-Aid for Scientific Research on Priority Areas “Comparative Genomics” 20017008 and “Cellular Sensor” 21026007 from the Ministry of Education, Culture, Sports, Science and Technology of Japan to S.K.; a Grant-in-Aid for JSPS Fellows (15-11926) to C.H.; postgraduate scholarships and grants from the Alberta Ingenuity Fund, the Natural Sciences and Engineering Research Council of Canada, the Leakey Foundation, and the Animal Behavior Society to A.D.M.; the Canada Research Chairs Program and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to L.M.F.; the Leakey Foundation and the North of England Zoological Society to F.A.; and the British Academy and the University of Chester small grants scheme to C.M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Kawamura, S., Hiramatsu, C., Melin, A.D., Schaffner, C.M., Aureli, F., Fedigan, L.M. (2012). Polymorphic Color Vision in Primates: Evolutionary Considerations. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_7

Download citation

Publish with us

Policies and ethics