Skip to main content

Post-Genome Biology of Primates Focusing on Taste Perception

  • Chapter
  • First Online:
Post-Genome Biology of Primates

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

There are many studies on the feeding behavior of primates as related to their environment. However, it has remained unclear how they taste and select specific foods. In this chapter, we introduce recent progress in the molecular biology of taste receptors, as one of the targets of post-genome biology, mainly focusing on humans and chimpanzees. Because there are many intraspecies polymorphisms as well as species-specific changes in amino acid sequences of taste receptors, analyzing these variations in combination with behavioral tests and meta-genome ecology will provide clues for elucidating how primates taste and select specific foods. This approach could also be applicable for elucidating the function of other species-specific or polymorphic genes found among the vast sequence data produced by genome projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AceK:

Acesulfame K

bp:

Base pair

CL:

Cytoplasmic loop

EL:

Extracellular loop

GMP:

Guanosine-5′-monophosphate

IMP:

Inosine-5′-monophosphate

indels:

Insertions/deletions

MSG:

Monosodium glutamate

ORFs:

Open reading frames

PTC:

Phenylthiocarbamide

SNPs:

Single nucleotide polymorphisms

TM:

Transmembrane

TRCs:

Taste receptor cells

References

  • Adler E, Hoon MA, Mueller KL et al (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  PubMed  CAS  Google Scholar 

  • Behrens M, Brockhoff A, Kuhn C et al (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319:479–485

    Article  PubMed  CAS  Google Scholar 

  • Behrens M, Brockhoff A, Batram C et al (2009) The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J Agric Food Chem 57:9860–9866

    Article  PubMed  CAS  Google Scholar 

  • Brockhoff A, Behrens M, Massarotti A et al (2007) Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem 55:6236–6243

    Article  PubMed  CAS  Google Scholar 

  • Bufe B, Hofmann T, Krautwurst D et al (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32:397–401

    Article  PubMed  CAS  Google Scholar 

  • Bufe B, Breslin PA, Kuhn C et al (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15:322–327

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA et al (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar J, Hoon MA, Ryba NJ et al (2006) The receptors and cells for mammalian taste. Nature (Lond) 444:288–294

    Article  CAS  Google Scholar 

  • Chivers DJ (1994) Diets and guts. In: Martin RD (ed) The Cambridge encyclopedia of human evolution. Cambridge University Press, New York

    Google Scholar 

  • Conte C, Ebeling M, Marcuz A et al (2003) Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiol Genomics 14:73–82

    PubMed  CAS  Google Scholar 

  • Cosyns JP, Jadoul M, Squifflet JP et al (1999) Urothelial lesions in Chinese-herb nephropathy. Am J Kidney Dis 33:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Duncan CJ (1960) The sense of taste in birds. Ann Appl Biol 48:409–414

    Article  Google Scholar 

  • Fischer A, Gilad Y, Man O et al (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436

    Article  PubMed  CAS  Google Scholar 

  • Ganchrow JR, Steiner JE, Bartana A (1990) Behavioral reactions to gustatory stimuli in young chicks (Gallus gallus domesticus). Dev Psychobiol 23:103–117

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI (1994) Is the bitter rejection response always adaptive? Physiol Behav 56:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Go Y (2006) Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol Biol Evol 23:964–972

    Article  PubMed  CAS  Google Scholar 

  • Go Y, Satta Y, Takenaka O et al (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326

    Article  PubMed  CAS  Google Scholar 

  • Halpern BP (1962) Gustatory nerve impulses in the chicken. Am J Physiol 203:541–544

    PubMed  CAS  Google Scholar 

  • Hoon MA, Adler E, Lindemeier J et al (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    Article  PubMed  CAS  Google Scholar 

  • Huffman MA, Seifu M (1989) Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.) by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates 30:51–63

    Article  Google Scholar 

  • Kim UK, Jorgenson E, Coon H et al (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Wooding S, Ricci D et al (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26:199–204

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M, Kusakabe Y, Miura H et al (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283:236–242

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu K, Ohigashi H, Huffman MA (1994) Use of Vernonia amygdalina by wild chimpanzee: possible roles of its bitter and related constituents. Physiol Behav 56:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Kuhn C, Bufe B, Winnig M et al (2004) Bitter taste receptors for saccharin and acesulfame K. J Neurosci 24:10260–10265

    Article  PubMed  CAS  Google Scholar 

  • Li X, Staszewski L, Xu H et al (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li W, Wang H et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1:27–35

    Article  PubMed  CAS  Google Scholar 

  • Maehashi K, Matano M, Wang H et al (2008) Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem Biophys Res Commun 365:851–855

    Article  PubMed  CAS  Google Scholar 

  • Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277:1–4

    Article  PubMed  CAS  Google Scholar 

  • Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature (Lond) 404:601–604

    Article  CAS  Google Scholar 

  • Max M, Shanker YG, Huang L et al (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28:58–63

    PubMed  CAS  Google Scholar 

  • Meyerhof W (2005) Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154:37–72

    Article  PubMed  CAS  Google Scholar 

  • Meyerhof W, Batram C, Kuhn C et al (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170

    Article  PubMed  CAS  Google Scholar 

  • Milton K (2003) The critical role played by animal source foods in human (Homo) evolution. J Nutr 133:3886S–3892S

    Article  PubMed  CAS  Google Scholar 

  • Montmayeur JP, Liberles SD, Matsunami H et al (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498

    PubMed  CAS  Google Scholar 

  • Mueller KL, Hoon MA, Erlenbach I et al (2005) The receptors and coding logic for bitter taste. Nature (Lond) 434:225–229

    Article  CAS  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J et al (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  PubMed  CAS  Google Scholar 

  • Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426

    Article  PubMed  CAS  Google Scholar 

  • Pronin AN, Tang H, Connor J et al (2004) Identification of ligands for two human bitter T2R receptors. Chem Senses 29:583–593

    Article  PubMed  CAS  Google Scholar 

  • Pronin AN, Xu H, Tang H et al (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 17:1403–1408

    Article  PubMed  CAS  Google Scholar 

  • Sainz E, Korley JN, Battey JF et al (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77:896–903

    Article  PubMed  CAS  Google Scholar 

  • Sainz E, Cavenagh MM, Gutierrez J et al (2007) Functional characterization of human bitter taste receptors. Biochem J 403:537–543

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zhang J, Yang H et al (2003) Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol 20:805–814

    Article  PubMed  CAS  Google Scholar 

  • Shigemura N, Shirosaki S, Sanematsu K et al (2009) Genetic and molecular basis of individual differences in human umami taste perception. PLoS One 21:e6717

    Article  Google Scholar 

  • Stanford CB (1998) Chimpanzee and red colobus: the ecology of predator and prey. Harvard University Press, Cambridge

    Google Scholar 

  • Sugawara T, Terai Y, Imai H et al (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci USA 102:5548–5553

    Article  Google Scholar 

  • Sugawara T, Imai H, Nikaido M et al (2010) Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation. Mol Biol Evol 27:506–516

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Go Y, Udono T et al (2011) Diversification of bitter taste receptor gene family in western chimpanzees. Mol Biol Evol 28:921–931

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Bufe B, Grassi C et al (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature (Lond) 440:930–934

    Article  CAS  Google Scholar 

  • Xu H, Staszewski L, Tang H et al (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101:14258–14263

    Article  PubMed  CAS  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA et al (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. Nakajima for English correction, and the Great Ape Information Network (GAIN) for the information of individual chimpanzees. Our work described here was financially supported by global COE program A06 and by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (20657044, 21370109, and 22247036), Environment Research and Technology Development Fund (D-1007) of the Ministry of the Environment, Japan, and grants from the Takeda Foundation for Science and the Suzuken Memorial Foundation to H.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Sugawara, T., Imai, H. (2012). Post-Genome Biology of Primates Focusing on Taste Perception. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_6

Download citation

Publish with us

Policies and ethics