Advertisement

Post-Genome Biology of Primates Focusing on Taste Perception

  • Tohru Sugawara
  • Hiroo Imai
Chapter
Part of the Primatology Monographs book series (PrimMono)

Abstract

There are many studies on the feeding behavior of primates as related to their environment. However, it has remained unclear how they taste and select specific foods. In this chapter, we introduce recent progress in the molecular biology of taste receptors, as one of the targets of post-genome biology, mainly focusing on humans and chimpanzees. Because there are many intraspecies polymorphisms as well as species-specific changes in amino acid sequences of taste receptors, analyzing these variations in combination with behavioral tests and meta-genome ecology will provide clues for elucidating how primates taste and select specific foods. This approach could also be applicable for elucidating the function of other species-specific or polymorphic genes found among the vast sequence data produced by genome projects.

Keywords

Bitter Taste Taste Receptor Aristolochic Acid Bitter Taste Receptor Sweet Taste Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AceK

Acesulfame K

bp

Base pair

CL

Cytoplasmic loop

EL

Extracellular loop

GMP

Guanosine-5′-monophosphate

IMP

Inosine-5′-monophosphate

indels

Insertions/deletions

MSG

Monosodium glutamate

ORFs

Open reading frames

PTC

Phenylthiocarbamide

SNPs

Single nucleotide polymorphisms

TM

Transmembrane

TRCs

Taste receptor cells

Notes

Acknowledgments

We thank Dr. E. Nakajima for English correction, and the Great Ape Information Network (GAIN) for the information of individual chimpanzees. Our work described here was financially supported by global COE program A06 and by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (20657044, 21370109, and 22247036), Environment Research and Technology Development Fund (D-1007) of the Ministry of the Environment, Japan, and grants from the Takeda Foundation for Science and the Suzuken Memorial Foundation to H.I.

References

  1. Adler E, Hoon MA, Mueller KL et al (2000) A novel family of mammalian taste receptors. Cell 100:693–702PubMedCrossRefGoogle Scholar
  2. Behrens M, Brockhoff A, Kuhn C et al (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319:479–485PubMedCrossRefGoogle Scholar
  3. Behrens M, Brockhoff A, Batram C et al (2009) The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J Agric Food Chem 57:9860–9866PubMedCrossRefGoogle Scholar
  4. Brockhoff A, Behrens M, Massarotti A et al (2007) Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem 55:6236–6243PubMedCrossRefGoogle Scholar
  5. Bufe B, Hofmann T, Krautwurst D et al (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32:397–401PubMedCrossRefGoogle Scholar
  6. Bufe B, Breslin PA, Kuhn C et al (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15:322–327PubMedCrossRefGoogle Scholar
  7. Chandrashekar J, Mueller KL, Hoon MA et al (2000) T2Rs function as bitter taste receptors. Cell 100:703–711PubMedCrossRefGoogle Scholar
  8. Chandrashekar J, Hoon MA, Ryba NJ et al (2006) The receptors and cells for mammalian taste. Nature (Lond) 444:288–294CrossRefGoogle Scholar
  9. Chivers DJ (1994) Diets and guts. In: Martin RD (ed) The Cambridge encyclopedia of human evolution. Cambridge University Press, New YorkGoogle Scholar
  10. Conte C, Ebeling M, Marcuz A et al (2003) Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiol Genomics 14:73–82PubMedGoogle Scholar
  11. Cosyns JP, Jadoul M, Squifflet JP et al (1999) Urothelial lesions in Chinese-herb nephropathy. Am J Kidney Dis 33:1011–1017PubMedCrossRefGoogle Scholar
  12. Duncan CJ (1960) The sense of taste in birds. Ann Appl Biol 48:409–414CrossRefGoogle Scholar
  13. Fischer A, Gilad Y, Man O et al (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436PubMedCrossRefGoogle Scholar
  14. Ganchrow JR, Steiner JE, Bartana A (1990) Behavioral reactions to gustatory stimuli in young chicks (Gallus gallus domesticus). Dev Psychobiol 23:103–117PubMedCrossRefGoogle Scholar
  15. Glendinning JI (1994) Is the bitter rejection response always adaptive? Physiol Behav 56:1217–1227PubMedCrossRefGoogle Scholar
  16. Go Y (2006) Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol Biol Evol 23:964–972PubMedCrossRefGoogle Scholar
  17. Go Y, Satta Y, Takenaka O et al (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326PubMedCrossRefGoogle Scholar
  18. Halpern BP (1962) Gustatory nerve impulses in the chicken. Am J Physiol 203:541–544PubMedGoogle Scholar
  19. Hoon MA, Adler E, Lindemeier J et al (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551PubMedCrossRefGoogle Scholar
  20. Huffman MA, Seifu M (1989) Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.) by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates 30:51–63CrossRefGoogle Scholar
  21. Kim UK, Jorgenson E, Coon H et al (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225PubMedCrossRefGoogle Scholar
  22. Kim U, Wooding S, Ricci D et al (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26:199–204PubMedCrossRefGoogle Scholar
  23. Kitagawa M, Kusakabe Y, Miura H et al (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283:236–242PubMedCrossRefGoogle Scholar
  24. Koshimizu K, Ohigashi H, Huffman MA (1994) Use of Vernonia amygdalina by wild chimpanzee: possible roles of its bitter and related constituents. Physiol Behav 56:1209–1216PubMedCrossRefGoogle Scholar
  25. Kuhn C, Bufe B, Winnig M et al (2004) Bitter taste receptors for saccharin and acesulfame K. J Neurosci 24:10260–10265PubMedCrossRefGoogle Scholar
  26. Li X, Staszewski L, Xu H et al (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696PubMedCrossRefGoogle Scholar
  27. Li X, Li W, Wang H et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1:27–35PubMedCrossRefGoogle Scholar
  28. Maehashi K, Matano M, Wang H et al (2008) Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem Biophys Res Commun 365:851–855PubMedCrossRefGoogle Scholar
  29. Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277:1–4PubMedCrossRefGoogle Scholar
  30. Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature (Lond) 404:601–604CrossRefGoogle Scholar
  31. Max M, Shanker YG, Huang L et al (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28:58–63PubMedGoogle Scholar
  32. Meyerhof W (2005) Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 154:37–72PubMedCrossRefGoogle Scholar
  33. Meyerhof W, Batram C, Kuhn C et al (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170PubMedCrossRefGoogle Scholar
  34. Milton K (2003) The critical role played by animal source foods in human (Homo) evolution. J Nutr 133:3886S–3892SPubMedCrossRefGoogle Scholar
  35. Montmayeur JP, Liberles SD, Matsunami H et al (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498PubMedGoogle Scholar
  36. Mueller KL, Hoon MA, Erlenbach I et al (2005) The receptors and coding logic for bitter taste. Nature (Lond) 434:225–229CrossRefGoogle Scholar
  37. Nelson G, Hoon MA, Chandrashekar J et al (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRefGoogle Scholar
  38. Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426PubMedCrossRefGoogle Scholar
  39. Pronin AN, Tang H, Connor J et al (2004) Identification of ligands for two human bitter T2R receptors. Chem Senses 29:583–593PubMedCrossRefGoogle Scholar
  40. Pronin AN, Xu H, Tang H et al (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 17:1403–1408PubMedCrossRefGoogle Scholar
  41. Sainz E, Korley JN, Battey JF et al (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77:896–903PubMedCrossRefGoogle Scholar
  42. Sainz E, Cavenagh MM, Gutierrez J et al (2007) Functional characterization of human bitter taste receptors. Biochem J 403:537–543PubMedCrossRefGoogle Scholar
  43. Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300PubMedCrossRefGoogle Scholar
  44. Shi P, Zhang J, Yang H et al (2003) Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol 20:805–814PubMedCrossRefGoogle Scholar
  45. Shigemura N, Shirosaki S, Sanematsu K et al (2009) Genetic and molecular basis of individual differences in human umami taste perception. PLoS One 21:e6717CrossRefGoogle Scholar
  46. Stanford CB (1998) Chimpanzee and red colobus: the ecology of predator and prey. Harvard University Press, CambridgeGoogle Scholar
  47. Sugawara T, Terai Y, Imai H et al (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc Natl Acad Sci USA 102:5548–5553CrossRefGoogle Scholar
  48. Sugawara T, Imai H, Nikaido M et al (2010) Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation. Mol Biol Evol 27:506–516PubMedCrossRefGoogle Scholar
  49. Sugawara T, Go Y, Udono T et al (2011) Diversification of bitter taste receptor gene family in western chimpanzees. Mol Biol Evol 28:921–931PubMedCrossRefGoogle Scholar
  50. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  51. Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678PubMedCrossRefGoogle Scholar
  52. Wooding S, Bufe B, Grassi C et al (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature (Lond) 440:930–934CrossRefGoogle Scholar
  53. Xu H, Staszewski L, Tang H et al (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101:14258–14263PubMedCrossRefGoogle Scholar
  54. Zhao GQ, Zhang Y, Hoon MA et al (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.Department of Reproductive BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan

Personalised recommendations