Functional Evolution of Primate Odorant Receptors

  • Kaylin A. Adipietro
  • Hiroaki Matsunami
  • Hanyi Zhuang
Part of the Primatology Monographs book series (PrimMono)


The olfactory system provides excellent models for evaluating primate adaptation to diverse and changing environments because the olfactory receptors are imperative in determining odor perception and in modulating species-specific behaviors. Consistent with this, chemosensory receptors including the odorant receptors (OR) are among the fastest evolving genes in animals. Although extensive bioinformatic analyses of OR sequences in primates have been conducted, little is known about the functional changes of individual receptors during evolution. Using heterologous cell systems, functional evaluation of ORs in primate evolution has become increasingly feasible. Orthologues of ORs can be cloned from different species, and functional analysis of these orthologues and their nonsynonymous changes should reveal OR responses to the cognate ligands and sites causing increases or decreases in sensitivity, as well as changes in ligand selectivity of the ORs. Functionally important residues can be used to evaluate sites with evidence of natural selection as predicted by existing computational analyses.


Olfactory Epithelium Olfactory System Mouse Lemur Odorant Receptor Howler Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adenylyl cyclase




Cyclic adenosine monophosphate


Cyclic nucleotide-gated


Number of nonsynonymous nucleotide substitutions per nonsynonymous site


Number of synonymous nucleotide substitutions per synonymous site


Formyl peptide receptor


Guanylyl cyclase type D


Heterotrimeric G-protein-coupled receptor


Olfactory heterotrimeric G-protein alpha-subunit




New World monkey


Olfactory receptor


Old World monkey


Receptor transport protein


Single nucleotide polymorphism




Trace amine-associated receptor


Vomeronasal type I receptor


Vomeronasal type II receptor



We are indebted to Dr. Hirohisa Hirai, Dr. Hiroo Imai, and Dr. Yasuhiro Go for their invitation to contribute to the book. Our work described here is supported by National Institutes of Health, Defense Advanced Research Projects Agency, Chinese National Natural Science Foundation, Shanghai Municipal Education Commission, Shanghai Education Development Foundation, and the Science and Technology Commission of Shanghai.


  1. Abbott DH (1984) Behavioral and physiological suppression of fertility in subordinate marmoset monkeys. Am J Primatol 6:169–186CrossRefGoogle Scholar
  2. Amoore JE (1967) Specific anosmia: a clue to the olfactory code. Nature (Lond) 214:1095–1098CrossRefGoogle Scholar
  3. Amoore JE (1977) Specific anosmia and the concept of primary odors. Chem Senses Flav 2:267–281CrossRefGoogle Scholar
  4. Barrett J, Abbott DH, George LM (1990) Extension of reproductive suppression by pheromonal cues in subordinate female marmoset monkeys, Callithrix jacchus. J Reprod Fertil 90:411–418PubMedCrossRefGoogle Scholar
  5. Barton RA (2006) Olfactory evolution and behavioral ecology in primates. Am J Primatol 68:545–558PubMedCrossRefGoogle Scholar
  6. Bensafi M, Brown WM, Khan R et al (2004) Sniffing human sex-steroid derived compounds modulates mood, memory and autonomic nervous system function in specific behavioral contexts. Behav Brain Res 152:11–22PubMedGoogle Scholar
  7. Berglund H, Lindstrom P, Savic I (2006) Brain response to putative pheromones in lesbian women. Proc Natl Acad Sci USA 103:8269–8274PubMedCrossRefGoogle Scholar
  8. Bird S, Gower DB (1983) Estimation of the odorous steroid, 5 alpha-androst-16-en-3-one, in human saliva. Experientia (Basel) 39:790–792CrossRefGoogle Scholar
  9. Boulet M, Charpentier MJ, Drea CM (2009) Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol Biol 9:281PubMedCrossRefGoogle Scholar
  10. Brooksbank BW, Haslewood GA (1961) The estimation of androst-16-en-3-alpha-ol in human urine. Partial synthesis of androstenol and of its beta-glucosiduronic acid. Biochem J 80:488–496PubMedGoogle Scholar
  11. Brooksbank BW, Brown R, Gustafsson JA (1974) The detection of 5-alpha-androst-16-en-3-alpha-ol in human male axillary sweat. Experientia (Basel) 30:864–865CrossRefGoogle Scholar
  12. Brown KS, Maclean CM, Robinette RR (1968) The distribution of the sensitivity to chemical odors in man. Hum Biol 40:456–472PubMedGoogle Scholar
  13. Clark AG, Glanowski S, Nielsen R et al (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302:1960–1963PubMedCrossRefGoogle Scholar
  14. Claus R, Alsing W (1976) Occurrence of 5-alpha-androst-16-en-3-one, a boar pheromone, in man and its relationship to testosterone. J Endocrinol 68:483–484PubMedCrossRefGoogle Scholar
  15. Dapporto L (2008) The asymmetric scent: ringtailed lemurs (Lemur catta) have distinct chemical signatures in left and right brachial glands. Naturwissenschaften 95:987–991PubMedCrossRefGoogle Scholar
  16. de Waal FB (1995) Bonobo sex and society. Sci Am 272:82–88PubMedCrossRefGoogle Scholar
  17. Digby LJ, Barreto CE (1993) Social organization in a wild population of Callithrix jacchus. I. Group composition and dynamics. Folia Primatol (Basel) 61:123–134CrossRefGoogle Scholar
  18. Dorries K, Adkins-Regan E, Halpern B (1995) Olfactory sensitivity to the pheromone, androstenone, is sexually dimorphic in the pig. Physiol Behav 57:255–259PubMedCrossRefGoogle Scholar
  19. Dorries K, Adkins-Regan E, Halpern B (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav Evol 49:53–62PubMedCrossRefGoogle Scholar
  20. Gilad Y, Segre D, Skorecki K et al (2000) Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat Genet 26:221–224PubMedCrossRefGoogle Scholar
  21. Gilad Y, Man O, Paabo S et al (2003) Human specific loss of olfactory receptor genes. Proc Natl Acad Sci USA 100:3324–3327PubMedCrossRefGoogle Scholar
  22. Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:E5PubMedCrossRefGoogle Scholar
  23. Gilad Y, Man O, Glusman G (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 15:224–230PubMedCrossRefGoogle Scholar
  24. Gilad Y, Przeworski M, Lancet D (2007) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 5:e148Google Scholar
  25. Gimelbrant AA, Skaletsky H, Chess A (2004) Selective pressures on the olfactory receptor repertoire since the human-chimpanzee divergence. Proc Natl Acad Sci USA 101:9019–9022PubMedCrossRefGoogle Scholar
  26. Glusman G, Bahar A, Sharon D et al (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11:1016–1023PubMedCrossRefGoogle Scholar
  27. Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907PubMedCrossRefGoogle Scholar
  28. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101:2156–2161PubMedCrossRefGoogle Scholar
  29. Gross EA, Swenberg JA, Fields S et al (1982) Comparative morphometry of the nasal cavity in rats and mice. J Anat 135:83–88PubMedGoogle Scholar
  30. Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34:252–269PubMedCrossRefGoogle Scholar
  31. Hasin Y, Olender T, Khen M et al (2008) High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution. PLoS Genet 4:e1000249PubMedCrossRefGoogle Scholar
  32. Hu J, Zhong C, Ding C et al (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957PubMedCrossRefGoogle Scholar
  33. Hughes AL (2008) The origin of adaptive phenotypes. Proc Natl Acad Sci USA 105:13193–13194PubMedCrossRefGoogle Scholar
  34. Hurst LD (2009a) Evolutionary genomics and the reach of selection. J Biol 8:12PubMedCrossRefGoogle Scholar
  35. Hurst LD (2009b) Evolutionary genomics: a positive becomes a negative. Nature (Lond) 457:543–544CrossRefGoogle Scholar
  36. Issel-Tarver L, Rine J (1997) The evolution of mammalian olfactory receptor genes. Genetics 145:185–195PubMedGoogle Scholar
  37. Jacob S, Kinnunen LH, Metz J et al (2001) Sustained human chemosignal unconsciously alters brain function. Neuroreport 12:2391–2394PubMedCrossRefGoogle Scholar
  38. Jacobs GH (1996) Primate photopigments and primate color vision. Proc Natl Acad Sci USA 93:577–581PubMedCrossRefGoogle Scholar
  39. Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633PubMedCrossRefGoogle Scholar
  40. Jacobs GH, Neitz M, Deegan JF et al (1996) Trichromatic colour vision in new world monkeys. Nature (Lond) 382:156–158CrossRefGoogle Scholar
  41. Jafek BW, Gordon AS, Moran DT et al (1990) Congenital anosmia. Ear Nose Throat J 69:331–337PubMedGoogle Scholar
  42. Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506PubMedCrossRefGoogle Scholar
  43. Kajiya K, Inaki K, Tanaka M et al (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21:6018–6025PubMedGoogle Scholar
  44. Kambere MB, Lane RP (2007) Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes. BMC Neurosci 8(suppl 3):S2PubMedCrossRefGoogle Scholar
  45. Katada S, Hirokawa T, Oka Y et al (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815PubMedCrossRefGoogle Scholar
  46. Keller A, Vosshall LB (2008) Better smelling through genetics: mammalian odor perception. Curr Opin Neurobiol 18:364–369PubMedCrossRefGoogle Scholar
  47. Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature (Lond) 449:468–472CrossRefGoogle Scholar
  48. Laska M, Seibt A, Weber A (2000) ‘Microsmatic’ primates revisited: olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53PubMedCrossRefGoogle Scholar
  49. Laska M, Miethe V, Rieck C et al (2005a) Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques. Exp Brain Res 160:302–311PubMedCrossRefGoogle Scholar
  50. Laska M, Wieser A, Hernandez Salazar LT (2005b) Olfactory responsiveness to two odorous steroids in three species of nonhuman primates. Chem Senses 30:505–511PubMedCrossRefGoogle Scholar
  51. Laska M, Rivas Bautista RM, Hernandez Salazar LT (2006a) Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). Am J Phys Anthropol 129:112–120PubMedCrossRefGoogle Scholar
  52. Laska M, Wieser A, Salazar LT (2006b) Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates. J Comp Psychol 120:106–112PubMedCrossRefGoogle Scholar
  53. Lazaro-Perea C, Snowdon CT, Arruda MD (1999) Scent-marking behavior in wild groups of common marmosets (Callithrix jacchus). Behav Ecol Sociobiol 46:313–324CrossRefGoogle Scholar
  54. Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512PubMedCrossRefGoogle Scholar
  55. Leonhardt SD, Tung J, Camden JB et al (2008) Seeing red: behavioral evidence of trichromatic color vision in strepsirrhine primates. Behav Ecol 20:1–12CrossRefGoogle Scholar
  56. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature (Lond) 442:645–650CrossRefGoogle Scholar
  57. Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847PubMedCrossRefGoogle Scholar
  58. Liman E (2006) Use it or lose it: molecular evolution of sensory signaling in primates. Pflügers Arch Eur J Physiol 453:125–131CrossRefGoogle Scholar
  59. Lundstrom JN, Goncalves M, Esteves F et al (2003) Psychological effects of subthreshold exposure to the putative human pheromone 4,16-androstadien-3-one. Horm Behav 44:395–401PubMedCrossRefGoogle Scholar
  60. Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  61. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254PubMedCrossRefGoogle Scholar
  62. Man O, Willhite DC, Crasto CJ et al (2007) A framework for exploring functional variability in olfactory receptor genes. PLoS One 2:e682PubMedCrossRefGoogle Scholar
  63. Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27(5):1192–1200PubMedCrossRefGoogle Scholar
  64. Matsunami H (2005) Functional expression of mammalian odorant receptors. Chem Senses 30(suppl 1):i95–i96PubMedCrossRefGoogle Scholar
  65. Menashe I, Man O, Lancet D et al (2003) Different noses for different people. Nat Genet 34:143–144PubMedCrossRefGoogle Scholar
  66. Menashe I, Abaffy T, Hasin Y et al (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5:e284PubMedCrossRefGoogle Scholar
  67. Mombaerts P (2001) How smell develops. Nat Neurosci 4(suppl 1):1192–1198PubMedCrossRefGoogle Scholar
  68. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278PubMedCrossRefGoogle Scholar
  69. Moreno-Estrada A, Casals F, Ramirez-Soriano A et al (2008) Signatures of selection in the human olfactory receptor OR5I1 gene. Mol Biol Evol 25:144–154PubMedCrossRefGoogle Scholar
  70. Nielsen R, Bustamante C, Clark AG et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170PubMedCrossRefGoogle Scholar
  71. Nievergelt CM, Digby LJ, Ramakrishnan U et al (2000) Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. Int J Primatol 21:1–20CrossRefGoogle Scholar
  72. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708PubMedCrossRefGoogle Scholar
  73. Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426PubMedCrossRefGoogle Scholar
  74. Nozawa M, Suzuki Y, Nei M (2009) Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci USA 106:6700–6705PubMedCrossRefGoogle Scholar
  75. Pause BM (2004) Are androgen steroids acting as pheromones in humans? Physiol Behav 83:21–29PubMedGoogle Scholar
  76. Perry GH, Martin RD, Verrelli BC (2007) Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol 24:1963–1970PubMedCrossRefGoogle Scholar
  77. Preti G, Wysocki CJ, Barnhart KT et al (2003) Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biol Reprod 68:2107–2113PubMedCrossRefGoogle Scholar
  78. Riviere S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature (Lond) 459:574–577CrossRefGoogle Scholar
  79. Rodriguez I, Greer CA, Mok MY et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19PubMedCrossRefGoogle Scholar
  80. Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874PubMedCrossRefGoogle Scholar
  81. Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature (Lond) 449:913–918CrossRefGoogle Scholar
  82. Saito H, Kubota M, Roberts RW et al (2004) Rtp family members induce functional expression of mammalian odorant receptors. Cell 119:679–691PubMedCrossRefGoogle Scholar
  83. Saito H, Chi Q, Zhuang H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9PubMedCrossRefGoogle Scholar
  84. Sam M, Vora S, Malnic B et al (2001) Neuropharmacology. Odorants may arouse instinctive behaviours. Nature (Lond) 412:142CrossRefGoogle Scholar
  85. Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109:1570–1583PubMedCrossRefGoogle Scholar
  86. Sun L, Wang H, Hu J et al (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046PubMedCrossRefGoogle Scholar
  87. Swann J, Rahaman F, Bijak T et al (2001) The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster. Neuroscience 105:695–706PubMedCrossRefGoogle Scholar
  88. Trinh K, Storm DR (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 6:519–525PubMedGoogle Scholar
  89. Wyart C, Webster WW, Chen JH et al (2007) Smelling a single component of male sweat alters levels of cortisol in women. J Neurosci 27:1261–1265PubMedCrossRefGoogle Scholar
  90. Wysocki CJ, Beauchamp GK (1984) Ability to smell androstenone is genetically determined. Proc Natl Acad Sci USA 81:4899–4902PubMedCrossRefGoogle Scholar
  91. Wysocki CJ, Gilbert AN (1989) National Geographic smell survey. Effects of age are heterogeneous. Ann NY Acad Sci 561:12–28PubMedCrossRefGoogle Scholar
  92. Yokoyama S, Tada T, Zhang H et al (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA 105:13480–13485PubMedCrossRefGoogle Scholar
  93. Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215PubMedCrossRefGoogle Scholar
  94. Young JM, Waters H, Dong C et al (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2:e884PubMedCrossRefGoogle Scholar
  95. Young JM, Endicott RM, Parghi SS et al (2008) Extensive copy-number variation of the human olfactory receptor gene family. Am J Hum Genet 83:228–242PubMedCrossRefGoogle Scholar
  96. Young JM, Massa HF, Hsu L et al (2009) Extreme variability among mammalian V1R gene families. Genome ResGoogle Scholar
  97. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133PubMedGoogle Scholar
  98. Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282:15284–15293PubMedCrossRefGoogle Scholar
  99. Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3:1402–1413PubMedCrossRefGoogle Scholar
  100. Zhuang H, Chien MS, Matsunami H (2009) Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proc Natl Acad Sci USA 106:21247–21251PubMedCrossRefGoogle Scholar
  101. Ziegler TE, Sousa MBC (2002) Parent-daughter relationships and social controls on fertility in female common marmosets, Callithrix jacchus. Horm Behav 42:356–367PubMedCrossRefGoogle Scholar
  102. Ziegler TE, Schultz-Darken NJ, Scott JJ et al (2005) Neuroendocrine response to female ovulatory odors depends upon social condition in male common marmosets, Callithrix jacchus. Horm Behav 47:56–64PubMedCrossRefGoogle Scholar
  103. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:RESEARCH0018Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Kaylin A. Adipietro
    • 1
  • Hiroaki Matsunami
    • 1
    • 2
  • Hanyi Zhuang
    • 3
    • 4
  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of EducationShanghai Jiaotong University School of MedicineShanghaiChina
  4. 4.Institute of Health SciencesShanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations