Skip to main content

Functional Evolution of Primate Odorant Receptors

  • Chapter
  • First Online:
Post-Genome Biology of Primates

Part of the book series: Primatology Monographs ((PrimMono))

  • 1068 Accesses

Abstract

The olfactory system provides excellent models for evaluating primate adaptation to diverse and changing environments because the olfactory receptors are imperative in determining odor perception and in modulating species-specific behaviors. Consistent with this, chemosensory receptors including the odorant receptors (OR) are among the fastest evolving genes in animals. Although extensive bioinformatic analyses of OR sequences in primates have been conducted, little is known about the functional changes of individual receptors during evolution. Using heterologous cell systems, functional evaluation of ORs in primate evolution has become increasingly feasible. Orthologues of ORs can be cloned from different species, and functional analysis of these orthologues and their nonsynonymous changes should reveal OR responses to the cognate ligands and sites causing increases or decreases in sensitivity, as well as changes in ligand selectivity of the ORs. Functionally important residues can be used to evaluate sites with evidence of natural selection as predicted by existing computational analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

ATP:

Adenosine-5′-triphosphate

cAMP:

Cyclic adenosine monophosphate

CNG:

Cyclic nucleotide-gated

dN:

Number of nonsynonymous nucleotide substitutions per nonsynonymous site

dS:

Number of synonymous nucleotide substitutions per synonymous site

FPR:

Formyl peptide receptor

GC-D:

Guanylyl cyclase type D

GPCR:

Heterotrimeric G-protein-coupled receptor

Gαolf :

Olfactory heterotrimeric G-protein alpha-subunit

GTP:

Guanosine-5′-triphosphate

NWM:

New World monkey

OR:

Olfactory receptor

OWM:

Old World monkey

RTP:

Receptor transport protein

SNP:

Single nucleotide polymorphism

TM:

Transmembrane

TAAR:

Trace amine-associated receptor

V1R:

Vomeronasal type I receptor

V2R:

Vomeronasal type II receptor

References

  • Abbott DH (1984) Behavioral and physiological suppression of fertility in subordinate marmoset monkeys. Am J Primatol 6:169–186

    Article  CAS  Google Scholar 

  • Amoore JE (1967) Specific anosmia: a clue to the olfactory code. Nature (Lond) 214:1095–1098

    Article  CAS  Google Scholar 

  • Amoore JE (1977) Specific anosmia and the concept of primary odors. Chem Senses Flav 2:267–281

    Article  CAS  Google Scholar 

  • Barrett J, Abbott DH, George LM (1990) Extension of reproductive suppression by pheromonal cues in subordinate female marmoset monkeys, Callithrix jacchus. J Reprod Fertil 90:411–418

    Article  PubMed  CAS  Google Scholar 

  • Barton RA (2006) Olfactory evolution and behavioral ecology in primates. Am J Primatol 68:545–558

    Article  PubMed  Google Scholar 

  • Bensafi M, Brown WM, Khan R et al (2004) Sniffing human sex-steroid derived compounds modulates mood, memory and autonomic nervous system function in specific behavioral contexts. Behav Brain Res 152:11–22

    PubMed  CAS  Google Scholar 

  • Berglund H, Lindstrom P, Savic I (2006) Brain response to putative pheromones in lesbian women. Proc Natl Acad Sci USA 103:8269–8274

    Article  PubMed  CAS  Google Scholar 

  • Bird S, Gower DB (1983) Estimation of the odorous steroid, 5 alpha-androst-16-en-3-one, in human saliva. Experientia (Basel) 39:790–792

    Article  CAS  Google Scholar 

  • Boulet M, Charpentier MJ, Drea CM (2009) Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol Biol 9:281

    Article  PubMed  Google Scholar 

  • Brooksbank BW, Haslewood GA (1961) The estimation of androst-16-en-3-alpha-ol in human urine. Partial synthesis of androstenol and of its beta-glucosiduronic acid. Biochem J 80:488–496

    PubMed  CAS  Google Scholar 

  • Brooksbank BW, Brown R, Gustafsson JA (1974) The detection of 5-alpha-androst-16-en-3-alpha-ol in human male axillary sweat. Experientia (Basel) 30:864–865

    Article  CAS  Google Scholar 

  • Brown KS, Maclean CM, Robinette RR (1968) The distribution of the sensitivity to chemical odors in man. Hum Biol 40:456–472

    PubMed  CAS  Google Scholar 

  • Clark AG, Glanowski S, Nielsen R et al (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302:1960–1963

    Article  PubMed  CAS  Google Scholar 

  • Claus R, Alsing W (1976) Occurrence of 5-alpha-androst-16-en-3-one, a boar pheromone, in man and its relationship to testosterone. J Endocrinol 68:483–484

    Article  PubMed  CAS  Google Scholar 

  • Dapporto L (2008) The asymmetric scent: ringtailed lemurs (Lemur catta) have distinct chemical signatures in left and right brachial glands. Naturwissenschaften 95:987–991

    Article  PubMed  CAS  Google Scholar 

  • de Waal FB (1995) Bonobo sex and society. Sci Am 272:82–88

    Article  PubMed  Google Scholar 

  • Digby LJ, Barreto CE (1993) Social organization in a wild population of Callithrix jacchus. I. Group composition and dynamics. Folia Primatol (Basel) 61:123–134

    Article  CAS  Google Scholar 

  • Dorries K, Adkins-Regan E, Halpern B (1995) Olfactory sensitivity to the pheromone, androstenone, is sexually dimorphic in the pig. Physiol Behav 57:255–259

    Article  PubMed  CAS  Google Scholar 

  • Dorries K, Adkins-Regan E, Halpern B (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav Evol 49:53–62

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Segre D, Skorecki K et al (2000) Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat Genet 26:221–224

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Man O, Paabo S et al (2003) Human specific loss of olfactory receptor genes. Proc Natl Acad Sci USA 100:3324–3327

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:E5

    Article  PubMed  Google Scholar 

  • Gilad Y, Man O, Glusman G (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 15:224–230

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Przeworski M, Lancet D (2007) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 5:e148

    Google Scholar 

  • Gimelbrant AA, Skaletsky H, Chess A (2004) Selective pressures on the olfactory receptor repertoire since the human-chimpanzee divergence. Proc Natl Acad Sci USA 101:9019–9022

    Article  PubMed  CAS  Google Scholar 

  • Glusman G, Bahar A, Sharon D et al (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907

    Article  PubMed  CAS  Google Scholar 

  • Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101:2156–2161

    Article  PubMed  CAS  Google Scholar 

  • Gross EA, Swenberg JA, Fields S et al (1982) Comparative morphometry of the nasal cavity in rats and mice. J Anat 135:83–88

    PubMed  CAS  Google Scholar 

  • Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34:252–269

    Article  PubMed  CAS  Google Scholar 

  • Hasin Y, Olender T, Khen M et al (2008) High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution. PLoS Genet 4:e1000249

    Article  PubMed  Google Scholar 

  • Hu J, Zhong C, Ding C et al (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (2008) The origin of adaptive phenotypes. Proc Natl Acad Sci USA 105:13193–13194

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD (2009a) Evolutionary genomics and the reach of selection. J Biol 8:12

    Article  PubMed  Google Scholar 

  • Hurst LD (2009b) Evolutionary genomics: a positive becomes a negative. Nature (Lond) 457:543–544

    Article  CAS  Google Scholar 

  • Issel-Tarver L, Rine J (1997) The evolution of mammalian olfactory receptor genes. Genetics 145:185–195

    PubMed  CAS  Google Scholar 

  • Jacob S, Kinnunen LH, Metz J et al (2001) Sustained human chemosignal unconsciously alters brain function. Neuroreport 12:2391–2394

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (1996) Primate photopigments and primate color vision. Proc Natl Acad Sci USA 93:577–581

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633

    Article  PubMed  Google Scholar 

  • Jacobs GH, Neitz M, Deegan JF et al (1996) Trichromatic colour vision in new world monkeys. Nature (Lond) 382:156–158

    Article  CAS  Google Scholar 

  • Jafek BW, Gordon AS, Moran DT et al (1990) Congenital anosmia. Ear Nose Throat J 69:331–337

    PubMed  CAS  Google Scholar 

  • Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506

    Article  PubMed  CAS  Google Scholar 

  • Kajiya K, Inaki K, Tanaka M et al (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21:6018–6025

    PubMed  CAS  Google Scholar 

  • Kambere MB, Lane RP (2007) Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes. BMC Neurosci 8(suppl 3):S2

    Article  PubMed  Google Scholar 

  • Katada S, Hirokawa T, Oka Y et al (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Vosshall LB (2008) Better smelling through genetics: mammalian odor perception. Curr Opin Neurobiol 18:364–369

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature (Lond) 449:468–472

    Article  CAS  Google Scholar 

  • Laska M, Seibt A, Weber A (2000) ‘Microsmatic’ primates revisited: olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Miethe V, Rieck C et al (2005a) Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques. Exp Brain Res 160:302–311

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Wieser A, Hernandez Salazar LT (2005b) Olfactory responsiveness to two odorous steroids in three species of nonhuman primates. Chem Senses 30:505–511

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Rivas Bautista RM, Hernandez Salazar LT (2006a) Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). Am J Phys Anthropol 129:112–120

    Article  PubMed  Google Scholar 

  • Laska M, Wieser A, Salazar LT (2006b) Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates. J Comp Psychol 120:106–112

    Article  PubMed  Google Scholar 

  • Lazaro-Perea C, Snowdon CT, Arruda MD (1999) Scent-marking behavior in wild groups of common marmosets (Callithrix jacchus). Behav Ecol Sociobiol 46:313–324

    Article  Google Scholar 

  • Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt SD, Tung J, Camden JB et al (2008) Seeing red: behavioral evidence of trichromatic color vision in strepsirrhine primates. Behav Ecol 20:1–12

    Article  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature (Lond) 442:645–650

    Article  CAS  Google Scholar 

  • Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Liman E (2006) Use it or lose it: molecular evolution of sensory signaling in primates. Pflügers Arch Eur J Physiol 453:125–131

    Article  CAS  Google Scholar 

  • Lundstrom JN, Goncalves M, Esteves F et al (2003) Psychological effects of subthreshold exposure to the putative human pheromone 4,16-androstadien-3-one. Horm Behav 44:395–401

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  • Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254

    Article  PubMed  CAS  Google Scholar 

  • Man O, Willhite DC, Crasto CJ et al (2007) A framework for exploring functional variability in olfactory receptor genes. PLoS One 2:e682

    Article  PubMed  Google Scholar 

  • Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27(5):1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Matsunami H (2005) Functional expression of mammalian odorant receptors. Chem Senses 30(suppl 1):i95–i96

    Article  PubMed  CAS  Google Scholar 

  • Menashe I, Man O, Lancet D et al (2003) Different noses for different people. Nat Genet 34:143–144

    Article  PubMed  CAS  Google Scholar 

  • Menashe I, Abaffy T, Hasin Y et al (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5:e284

    Article  PubMed  Google Scholar 

  • Mombaerts P (2001) How smell develops. Nat Neurosci 4(suppl 1):1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Estrada A, Casals F, Ramirez-Soriano A et al (2008) Signatures of selection in the human olfactory receptor OR5I1 gene. Mol Biol Evol 25:144–154

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170

    Article  PubMed  Google Scholar 

  • Nievergelt CM, Digby LJ, Ramakrishnan U et al (2000) Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. Int J Primatol 21:1–20

    Article  Google Scholar 

  • Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708

    Article  PubMed  Google Scholar 

  • Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426

    Article  PubMed  CAS  Google Scholar 

  • Nozawa M, Suzuki Y, Nei M (2009) Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci USA 106:6700–6705

    Article  PubMed  CAS  Google Scholar 

  • Pause BM (2004) Are androgen steroids acting as pheromones in humans? Physiol Behav 83:21–29

    PubMed  CAS  Google Scholar 

  • Perry GH, Martin RD, Verrelli BC (2007) Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol 24:1963–1970

    Article  PubMed  CAS  Google Scholar 

  • Preti G, Wysocki CJ, Barnhart KT et al (2003) Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biol Reprod 68:2107–2113

    Article  PubMed  CAS  Google Scholar 

  • Riviere S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature (Lond) 459:574–577

    Article  CAS  Google Scholar 

  • Rodriguez I, Greer CA, Mok MY et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19

    Article  PubMed  CAS  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature (Lond) 449:913–918

    Article  CAS  Google Scholar 

  • Saito H, Kubota M, Roberts RW et al (2004) Rtp family members induce functional expression of mammalian odorant receptors. Cell 119:679–691

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Chi Q, Zhuang H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9

    Article  PubMed  Google Scholar 

  • Sam M, Vora S, Malnic B et al (2001) Neuropharmacology. Odorants may arouse instinctive behaviours. Nature (Lond) 412:142

    Article  CAS  Google Scholar 

  • Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109:1570–1583

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Wang H, Hu J et al (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046

    Article  PubMed  CAS  Google Scholar 

  • Swann J, Rahaman F, Bijak T et al (2001) The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster. Neuroscience 105:695–706

    Article  PubMed  CAS  Google Scholar 

  • Trinh K, Storm DR (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 6:519–525

    PubMed  CAS  Google Scholar 

  • Wyart C, Webster WW, Chen JH et al (2007) Smelling a single component of male sweat alters levels of cortisol in women. J Neurosci 27:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wysocki CJ, Beauchamp GK (1984) Ability to smell androstenone is genetically determined. Proc Natl Acad Sci USA 81:4899–4902

    Article  PubMed  CAS  Google Scholar 

  • Wysocki CJ, Gilbert AN (1989) National Geographic smell survey. Effects of age are heterogeneous. Ann NY Acad Sci 561:12–28

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Tada T, Zhang H et al (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA 105:13480–13485

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Waters H, Dong C et al (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2:e884

    Article  PubMed  Google Scholar 

  • Young JM, Endicott RM, Parghi SS et al (2008) Extensive copy-number variation of the human olfactory receptor gene family. Am J Hum Genet 83:228–242

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Massa HF, Hsu L et al (2009) Extreme variability among mammalian V1R gene families. Genome Res

    Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    PubMed  CAS  Google Scholar 

  • Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282:15284–15293

    Article  PubMed  CAS  Google Scholar 

  • Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3:1402–1413

    Article  PubMed  CAS  Google Scholar 

  • Zhuang H, Chien MS, Matsunami H (2009) Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proc Natl Acad Sci USA 106:21247–21251

    Article  PubMed  CAS  Google Scholar 

  • Ziegler TE, Sousa MBC (2002) Parent-daughter relationships and social controls on fertility in female common marmosets, Callithrix jacchus. Horm Behav 42:356–367

    Article  PubMed  CAS  Google Scholar 

  • Ziegler TE, Schultz-Darken NJ, Scott JJ et al (2005) Neuroendocrine response to female ovulatory odors depends upon social condition in male common marmosets, Callithrix jacchus. Horm Behav 47:56–64

    Article  PubMed  CAS  Google Scholar 

  • Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:RESEARCH0018

    Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Hirohisa Hirai, Dr. Hiroo Imai, and Dr. Yasuhiro Go for their invitation to contribute to the book. Our work described here is supported by National Institutes of Health, Defense Advanced Research Projects Agency, Chinese National Natural Science Foundation, Shanghai Municipal Education Commission, Shanghai Education Development Foundation, and the Science and Technology Commission of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Matsunami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Adipietro, K.A., Matsunami, H., Zhuang, H. (2012). Functional Evolution of Primate Odorant Receptors. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_5

Download citation

Publish with us

Policies and ethics