Evolution of Chemosensory Receptor Genes in Primates and Other Mammals

Part of the Primatology Monographs book series (PrimMono)


Chemosensory receptors for detecting chemical molecules in the environment are present in essentially all motile organisms ranging from bacteria to mammals. Mammals have at least seven different gene families of chemosensory receptors: olfactory receptors (ORs), vomeronasal (pheromone) receptors type 1 and 2, trace amine-associated receptors, formyl peptide receptors, and taste receptors type 1 and 2. Among them, OR genes far outnumber the other genes, forming the largest multigene family in vertebrates. Recent bioinformatic analyses using the whole genome sequences have revealed that the numbers of functional chemosensory receptor genes and pseudogenes differ greatly among different species. Many mammalian species such as mice or rats have approximately 1,000 functional OR genes, while higher primates including hominoids (humans, chimpanzees, and orangutans), Old World monkeys (OWMs; macaques), and New World monkeys (marmosets) show smaller numbers (<400) of functional OR genes and larger fractions (37–52%) of pseudogenes. Moreover, almost all the vomeronasal receptor genes in hominoids and OWMs are apparently nonfunctional. Extensive phylogenetic analyses showed that OR and other chemosensory receptor gene families are characterized by dynamic gains and losses of genes. It appears that the repertoires of chemosensory receptor genes in each species are largely determined by the needs from each species living environment, and the reduction of repertoire sizes in primates would reflect their reliance on vision rather than olfaction.


Tree Shrew Much Recent Common Ancestor Formyl Peptide Receptor Accessory Olfactory Bulb Chemosensory Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Copy number variation


Formyl peptide receptor


G-protein-coupled receptor


Main olfactory epithelium


Main olfactory system


Most recent common ancestor


New World monkey


Olfactory receptor


Old World monkey


Single nucleotide polymorphism


Trace amine-associated receptor


Vomeronasal organ


Vomeronasal system


  1. Adler E, Hoon MA, Mueller KL et al (2000) A novel family of mammalian taste receptors. Cell 100:693–702PubMedCrossRefGoogle Scholar
  2. Amoore JE (1967) Specific anosmia: a clue to the olfactory code. Nature (Lond) 214:1095–1098CrossRefGoogle Scholar
  3. Barton RA (2006) Olfactory evolution and behavioral ecology in primates. Am J Primatol 68:545–558PubMedCrossRefGoogle Scholar
  4. Baxi KN, Dorries KM, Eisthen HL (2006) Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci 29:1–7PubMedCrossRefGoogle Scholar
  5. Boesch C, Boesch-Achermann H (2000) The chimpanzees of the Taï Forest: behavioural ecology and evolution. Oxford University Press, New YorkGoogle Scholar
  6. Borowsky B, Adham N, Jones KA et al (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971PubMedCrossRefGoogle Scholar
  7. Boschat C, Pélofi C, Randin O et al (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 5:1261–1262PubMedCrossRefGoogle Scholar
  8. Boulay F, Tardif M, Brouchon L et al (1990) The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry 29:11123–11133PubMedCrossRefGoogle Scholar
  9. Bryson-Richardson RJ, Logan DW, Currie PD et al (2004) Large-scale analysis of gene structure in rhodopsin-like GPCRs: evidence for widespread loss of an ancient intron. Gene (Amst) 338:15–23CrossRefGoogle Scholar
  10. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  11. De la Cruz O, Blekhman R, Zhang X et al (2009) A signature of evolutionary constraint on a subset of ectopically expressed olfactory receptor genes. Mol Biol Evol 26:491–494PubMedCrossRefGoogle Scholar
  12. Del Punta K, Leinders-Zufall T, Rodriguez I et al (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature (Lond) 419:70–74CrossRefGoogle Scholar
  13. Dong D, Jones G, Zhang S (2009) Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol Biol 9:12PubMedCrossRefGoogle Scholar
  14. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206PubMedCrossRefGoogle Scholar
  15. Feldmesser E, Olender T, Khen M et al (2006) Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7:121PubMedCrossRefGoogle Scholar
  16. Fredriksson R, Lagerström MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRefGoogle Scholar
  17. Gilad Y, Man O, Pääbo S et al (2003) Human specific loss of olfactory receptor genes. Proc Natl Acad Sci USA 100:3324–3327PubMedCrossRefGoogle Scholar
  18. Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:e5PubMedCrossRefGoogle Scholar
  19. Gilad Y, Man O, Glusman G (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 15:224–230PubMedCrossRefGoogle Scholar
  20. Gilad Y, Wiebe V, Przeworski M et al (2007) Correction: loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 5:e148CrossRefGoogle Scholar
  21. Gimelbrant AA, Skaletsky H, Chess A (2004) Selective pressures on the olfactory receptor repertoire since the human–chimpanzee divergence. Proc Natl Acad Sci USA 101:9019–9022PubMedCrossRefGoogle Scholar
  22. Glusman G, Bahar A, Sharon D et al (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11:1016–1023PubMedCrossRefGoogle Scholar
  23. Glusman G, Yanai I, Rubin I et al (2001) The complete human olfactory subgenome. Genome Res 11:685–702PubMedCrossRefGoogle Scholar
  24. Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907PubMedCrossRefGoogle Scholar
  25. Go Y, Satta Y, Takenaka O et al (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326PubMedCrossRefGoogle Scholar
  26. Grus WE, Zhang J (2008) Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 25:1593–1601PubMedCrossRefGoogle Scholar
  27. Grus WE, Shi P, Zhang YP et al (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA 102:5767–5772PubMedCrossRefGoogle Scholar
  28. Grus WE, Shi P, Zhang J (2007) Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol Biol Evol 24:2153–2157PubMedCrossRefGoogle Scholar
  29. Hasin Y, Olender T, Khen M et al (2008) High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution. PLoS Genet 4:e1000249PubMedCrossRefGoogle Scholar
  30. Hasin-Brumshtein Y, Lancet D, Olender T (2009) Human olfaction: from genomic variation to phenotypic diversity. Trends Genet 25:178–184PubMedCrossRefGoogle Scholar
  31. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773PubMedCrossRefGoogle Scholar
  32. Hiramatsu C, Melin AD, Aureli F et al (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One 3:e3356PubMedCrossRefGoogle Scholar
  33. Ikeda K (2002) New seasonings. Chem Senses 27:847–849PubMedCrossRefGoogle Scholar
  34. Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature (Lond) 449:468–472CrossRefGoogle Scholar
  35. Kimoto H, Haga S, Sato K et al (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature (Lond) 437:898–901CrossRefGoogle Scholar
  36. Kishida T, Kubota S, Shirayama Y et al (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3:428–430PubMedCrossRefGoogle Scholar
  37. Lévai O, Feistel T, Breer H et al (2006) Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J Comp Neurol 498:476–490PubMedCrossRefGoogle Scholar
  38. Leinders-Zufall T, Brennan P, Widmayer P et al (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 5:1033–1037CrossRefGoogle Scholar
  39. Li X, Li W, Wang H et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1:27–35PubMedCrossRefGoogle Scholar
  40. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature (Lond) 442:645–650CrossRefGoogle Scholar
  41. Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847PubMedCrossRefGoogle Scholar
  42. Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci USA 100:3328–3332PubMedCrossRefGoogle Scholar
  43. Lindemann L, Hoener MC (2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26:274–281PubMedCrossRefGoogle Scholar
  44. Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  45. Matsui A, Go M, Niimura Y (2010) Comparative evolutionary analyses of olfactory receptor gene repertoires in primates do not support a trade-off between olfaction and color vision. Mol Biol Evol 27:1192–1200PubMedCrossRefGoogle Scholar
  46. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784PubMedCrossRefGoogle Scholar
  47. Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature (Lond) 404:601–614CrossRefGoogle Scholar
  48. McGowen MR, Clark C, Gatesy J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst Biol 57:574–590PubMedCrossRefGoogle Scholar
  49. Menashe I, Man O, Lancet D et al (2003) Different noses for different people. Nat Genet 34:143–144PubMedCrossRefGoogle Scholar
  50. Menashe I, Aloni R, Lancet D (2006) A probabilistic classifier for olfactory receptor pseudogenes. BMC Bioinformatics 7:393PubMedCrossRefGoogle Scholar
  51. Menashe I, Abaffy T, Hasin Y et al (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5:e284PubMedCrossRefGoogle Scholar
  52. Meredith M (2001) Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses 26:433–445PubMedCrossRefGoogle Scholar
  53. Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17:501–519PubMedCrossRefGoogle Scholar
  54. Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci USA 104:12235–12242PubMedCrossRefGoogle Scholar
  55. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  56. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  57. Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963PubMedCrossRefGoogle Scholar
  58. Nelson G, Hoon MA, Chandrashekar J et al (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRefGoogle Scholar
  59. Nelson G, Chandrashekar J, Hoon MA et al (2002) An amino-acid taste receptor. Nature (Lond) 416:199–202CrossRefGoogle Scholar
  60. Newman T, Trask BJ (2003) Complex evolution of 7E olfactory receptor genes in segmental duplications. Genome Res 13:781–793PubMedCrossRefGoogle Scholar
  61. Niimura Y (2009a) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44PubMedCrossRefGoogle Scholar
  62. Niimura Y (2009b) Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 4(2):107–118PubMedGoogle Scholar
  63. Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci USA 100:12235–12240PubMedCrossRefGoogle Scholar
  64. Niimura Y, Nei M (2005a) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044PubMedCrossRefGoogle Scholar
  65. Niimura Y, Nei M (2005b) Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene (Amst) 346:13–21CrossRefGoogle Scholar
  66. Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51:505–517PubMedCrossRefGoogle Scholar
  67. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708PubMedCrossRefGoogle Scholar
  68. Nishida T (1997) Sexual behavior of adult male chimpanzees of the Mahale Mountains National Park, Tanzania. Primates 38:379–398CrossRefGoogle Scholar
  69. Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426PubMedCrossRefGoogle Scholar
  70. Ohara H, Nikaido M, Date-Ito A et al (2009) Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species. BMC Evol Biol 9:233PubMedCrossRefGoogle Scholar
  71. Rivière S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature (Lond) 459:574–577CrossRefGoogle Scholar
  72. Rodriguez I, Mombaerts P (2002) Novel human vomeronasal receptor-like genes reveal species-specific families. Curr Biol 12:R409–R411PubMedCrossRefGoogle Scholar
  73. Rodriguez I, Greer CA, Mok MY et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19PubMedCrossRefGoogle Scholar
  74. Rudd MK, Endicott RM, Friedman C et al (2009) Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 19:33–41PubMedCrossRefGoogle Scholar
  75. Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379PubMedCrossRefGoogle Scholar
  76. Saito H, Chi Q, Zhuang H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9PubMedCrossRefGoogle Scholar
  77. Serizawa S, Miyamichi K, Nakatani H et al (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094PubMedCrossRefGoogle Scholar
  78. Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300PubMedCrossRefGoogle Scholar
  79. Shirokova E, Raguse JD, Meyerhof W et al (2008) The human vomeronasal type-1 receptor family—detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J 22:1416–1425PubMedCrossRefGoogle Scholar
  80. Smith TD, Bhatnagar KP (2004) Microsmatic primates: reconsidering how and when size matters. Anat Rec B New Anat 279:24–31PubMedCrossRefGoogle Scholar
  81. Spehr M, Gisselmann G, Poplawski A et al (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058PubMedCrossRefGoogle Scholar
  82. Stern K, McClintock MK (1998) Regulation of ovulation by human pheromones. Nature (Lond) 392:177–179CrossRefGoogle Scholar
  83. Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678PubMedCrossRefGoogle Scholar
  84. Wysocki CJ, Preti G (2004) Facts, fallacies, fears, and frustrations with human pheromones. Anat Rec A Discov Mol Cell Evol Biol 281:1201–1211PubMedCrossRefGoogle Scholar
  85. Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215PubMedCrossRefGoogle Scholar
  86. Young JM, Shykind BM, Lane RP et al (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4:R71PubMedCrossRefGoogle Scholar
  87. Young JM, Kambere M, Trask BJ et al (2005) Divergent V1R repertoires in five species: amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res 15:231–240PubMedCrossRefGoogle Scholar
  88. Young JM, Endicott RM, Parghi SS et al (2008) Extensive copy-number variation of the human olfactory receptor gene family. Am J Hum Genet 83:228–242PubMedCrossRefGoogle Scholar
  89. Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA 100:8337–8341PubMedCrossRefGoogle Scholar
  90. Zhang X, De la Cruz O, Pinto JM et al (2007) Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol 8:R86PubMedCrossRefGoogle Scholar
  91. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:research0018.1–0018.12Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations