An Overview of Transcriptome Studies in Non-Human Primates

  • Naoki Osada
Part of the Primatology Monographs book series (PrimMono)


The transcriptome represents the whole set of transcribed data in a genome. It is an important link between the genotype and phenotype of an organism. Transcriptome studies in non-human primates have been performed in many biomedical and evolutionary studies, which have led to many novel findings. Two major methods for transcriptome analysis summarized here are cDNA cloning and DNA microarrays. Both methods have technical advantages and disadvantages. Generally, cDNA cloning has an advantage for qualitative measurement of transcripts, such as for sequence or structural changes in mRNAs, whereas DNA microarrays have an advantage for quantitative measurement of gene expression levels. New DNA sequencers can identify millions or billions of transcripts, and thus are useful for both qualitative and quantitative measurement of the transcriptome, which will open new fields of transcriptome studies.


Transcriptome Study Tiling Array Human Lineage Cynomolgus Macaque Chimpanzee Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Complementary DNA


Expressed sequence tag


Serial analysis of gene expression


  1. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927–935PubMedGoogle Scholar
  2. Baskin CR, Garcia-Sastre A, Tumpey TM et al (2004) Integration of clinical data, pathology, and cDNA microarrays in influenza virus-infected pigtailed macaques (Macaca nemestrina). J Virol 78:10420–10432PubMedCrossRefGoogle Scholar
  3. Berglund J, Pollard KS, Webster MT (2009) Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7:e26PubMedCrossRefGoogle Scholar
  4. Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246PubMedCrossRefGoogle Scholar
  5. Caceres M, Lachuer J, Zapala MA et al (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035PubMedCrossRefGoogle Scholar
  6. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563PubMedCrossRefGoogle Scholar
  7. Chen WH, Wang XX, Lin W et al (2006) Analysis of 10,000 ESTs from lymphocytes of the cynomolgus monkey to improve our understanding of its immune system. BMC Genomics 7:82PubMedCrossRefGoogle Scholar
  8. Clark AG, Glanowski S, Nielsen R et al (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302:1960–1963PubMedCrossRefGoogle Scholar
  9. Consortium TCSaA (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature (Lond) 437:69–87CrossRefGoogle Scholar
  10. Datson NA, Morsink MC, Atanasova S et al (2007) Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate. BMC Genomics 8:190PubMedCrossRefGoogle Scholar
  11. Dillman JF 3rd, Phillips CS (2005) Comparison of non-human primate and human whole blood tissue gene expression profiles. Toxicol Sci 87:306–314PubMedCrossRefGoogle Scholar
  12. Djavani M, Crasta O, Zhang Y et al (2009) Gene expression in primate liver during viral hemorrhagic fever. Virol J 6:20PubMedCrossRefGoogle Scholar
  13. Dorus S, Vallender EJ, Evans PD et al (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119:1027–1040PubMedCrossRefGoogle Scholar
  14. Editorial (2008) When less is not more. Nat Med 14:791–792CrossRefGoogle Scholar
  15. Enard W, Khaitovich P, Klose J et al (2002a) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343PubMedCrossRefGoogle Scholar
  16. Enard W, Przeworski M, Fisher SE et al (2002b) Molecular evolution of FOXP2, a gene involved in speech and language. Nature (Lond) 418:869–872CrossRefGoogle Scholar
  17. Evans PD, Gilbert SL, Mekel Bobrov N et al (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720PubMedCrossRefGoogle Scholar
  18. Fujita E, Tanabe Y, Shiota A et al (2008) Ultrasonic vocalization impairment of FOXP2 (R552H) knockin mice related to speech-language disorder and abnormality of purkinje cells. Proc Natl Acad Sci USA 105:3117–3122PubMedCrossRefGoogle Scholar
  19. Gibbs RA, Rogers J, Katze MG et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234PubMedCrossRefGoogle Scholar
  20. Gilad Y, Rifkin SA, Bertone P et al (2005) Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Res 15:674–680PubMedCrossRefGoogle Scholar
  21. Gilad Y, Oshlack A, Smyth GK et al (2006) Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature (Lond) 440:242–245CrossRefGoogle Scholar
  22. Grossman LI, Wildman DE, Schmidt TR et al (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20:578–585PubMedCrossRefGoogle Scholar
  23. Groszer M, Keays DA, Deacon RMJ et al (2008) Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 18:354–362PubMedCrossRefGoogle Scholar
  24. Gu J, Gu X (2003) Induced gene expression in human brain after the split from chimpanzee. Trends Genet 19:63–65PubMedCrossRefGoogle Scholar
  25. Hashimoto S, Qu W, Ahsan B et al (2009) High-resolution analysis of the 5′-end transcriptome using a next generation DNA sequencer. PLoS ONE 4:e4108PubMedCrossRefGoogle Scholar
  26. Hellmann I, Zollner S, Enard W et al (2003) Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res 13:831–837PubMedCrossRefGoogle Scholar
  27. Hida M, Suzuki Y, Sugano S et al (2000) Construction and preliminary characterization of full-length enriched cDNA libraries for nonhuman primates (in Japanese). Primate Res 16:95–110CrossRefGoogle Scholar
  28. Jacquelin B, Mayau V, Brysbaert G et al (2007) Long oligonucleotide microarrays for African green monkey gene expression profile analysis. FASEB J 21:3262–3271PubMedCrossRefGoogle Scholar
  29. Kampa D, Cheng J, Kapranov P et al (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342PubMedCrossRefGoogle Scholar
  30. Khaitovich P, Hellmann I, Enard W et al (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–1854PubMedCrossRefGoogle Scholar
  31. Kimura M (1968) Evolutionary rate at the molecular level. Nature (Lond) 217:624–626CrossRefGoogle Scholar
  32. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedCrossRefGoogle Scholar
  33. Kobasa D, Jones SM, Shinya K et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature (Lond) 445:319–323CrossRefGoogle Scholar
  34. Kothapalli KS, Anthony JC, Pan BS et al (2007) Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS ONE 2:e370PubMedCrossRefGoogle Scholar
  35. Lin L, Liu S, Brockway H et al (2009) Using high-density exon arrays to profile gene expression in closely related species. Nucleic Acids Res 37:e90PubMedCrossRefGoogle Scholar
  36. Lu Y, Huggins P, Bar-Joseph Z (2009) Cross species analysis of microarray expression data. Bioinformatics 25:1476–1483PubMedCrossRefGoogle Scholar
  37. Magness CL, Fellin PC, Thomas MJ et al (2005) Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human. Genome Biol 6:R60PubMedCrossRefGoogle Scholar
  38. Marvanova M, Ménager J, Bezard E et al (2003) Microarray analysis of nonhuman primates: validation of experimental models in neurological disorders. FASEB J 17:929–931PubMedGoogle Scholar
  39. Mekel-Bobrov N, Gilbert SL, Evans PD et al (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309:1720–1722PubMedCrossRefGoogle Scholar
  40. Mewes HW, Amid C, Arnold R et al (2004) MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32:D41–D44PubMedCrossRefGoogle Scholar
  41. Nielsen R, Bustamante C, Clark AG et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170PubMedCrossRefGoogle Scholar
  42. Nijland MJ, Schlabritz-Loutsevitch NE, Hubbard GB et al (2007) Non-human primate fetal kidney transcriptome analysis indicates mammalian target of rapamycin (MTOR) is a central nutrient-responsive pathway. J Physiol 579:643–656PubMedCrossRefGoogle Scholar
  43. Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature (Lond) 246:96–98CrossRefGoogle Scholar
  44. Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103:17973–17978PubMedCrossRefGoogle Scholar
  45. Osada N, Hida M, Kusuda J et al (2002) Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence. BMC Genomics 3:36PubMedCrossRefGoogle Scholar
  46. Osada N, Hashimoto K, Kameoka Y et al (2008) Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics 9:90PubMedCrossRefGoogle Scholar
  47. Osada N, Hirata M, Tanuma R et al (2009) Collection of Macaca fascicularis cDNAs derived from bone marrow, kidney, liver, pancreas, spleen, and thymus. BMC Res Notes 2:199PubMedCrossRefGoogle Scholar
  48. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35:e99PubMedCrossRefGoogle Scholar
  49. Rubins KH, Hensley LE, Jahrling PB et al (2004) The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a nonhuman primate model. Proc Natl Acad Sci USA 101:15190–15195PubMedCrossRefGoogle Scholar
  50. Sakate R, Osada N, Hida M et al (2003) Analysis of 5′-end sequences of chimpanzee cDNAs. Genome Res 13:1022–1026PubMedCrossRefGoogle Scholar
  51. Sarich VM, Wilson AC (1967) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148PubMedCrossRefGoogle Scholar
  52. Shi P, Bakewell MA, Zhang J (2006) Did brain-specific genes evolve faster in humans than in chimpanzees? Trends Genet 22:608–613PubMedCrossRefGoogle Scholar
  53. Shu W, Cho JY, Jiang Y et al (2005) Altered ultrasonic vocalization in mice with a disruption in the FOXP2 gene. Proc Natl Acad Sci USA 102:9643–9648PubMedCrossRefGoogle Scholar
  54. Spindel ER, Pauley MA, Jia Y et al (2005) Leveraging human genomic information to identify nonhuman primate sequences for expression array development. BMC Genomics 6:160PubMedCrossRefGoogle Scholar
  55. Sui Y, Potula R, Pinson D et al (2003) Microarray analysis of cytokine and chemokine genes in the brains of macaques with SHIV-encephalitis. J Med Primatol 32:229–239PubMedCrossRefGoogle Scholar
  56. Vahey MT, Nau ME, Taubman M et al (2003) Patterns of gene expression in peripheral blood mononuclear cells of rhesus macaques infected with SIVmac251 and exhibiting differential rates of disease progression. AIDS Res Hum Retroviruses 19:369–387PubMedCrossRefGoogle Scholar
  57. Walker SJ, Wang Y, Grant KA et al (2006) Long versus short oligonucleotide microarrays for the study of gene expression in nonhuman primates. J Neurosci Methods 152:179–189PubMedCrossRefGoogle Scholar
  58. Wallace JC, Korth MJ, Paeper B et al (2007) High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations. BMC Genomics 8:28PubMedCrossRefGoogle Scholar
  59. Wang HY, Tang H, Shen CK et al (2003) Rapidly evolving genes in human. I. The glycophorins and their possible role in evading malaria parasites. Mol Biol Evol 20:1795–1804PubMedCrossRefGoogle Scholar
  60. Wang Z, Lewis MG, Nau ME et al (2004) Identification and utilization of inter-species conserved (ISC) probesets on affymetrix human genechip platforms for the optimization of the assessment of expression patterns in non human primate (NHP) samples. BMC Bioinformatics 5:165PubMedCrossRefGoogle Scholar
  61. Wang HY, Chien HC, Osada N et al (2007) Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol 5:e13PubMedCrossRefGoogle Scholar
  62. Ylostalo J, Randall AC, Myers TA et al (2005) Transcriptome profiles of host gene expression in a monkey model of human malaria. J Infect Dis 191:400–409PubMedCrossRefGoogle Scholar
  63. Zhang J (2003) Evolution of the human ASPM gene, a major determinant of brain size. Genetics 165:2063–2070PubMedGoogle Scholar
  64. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479PubMedCrossRefGoogle Scholar
  65. Zou J, Young S, Zhu F et al (2002) Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol 3(5):research0020Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Population GeneticsNational Institute of GeneticsShizuokaJapan

Personalised recommendations