Advertisement

Molecular Phylogeny and Evolution in Primates

  • Atsushi Matsui
  • Masami Hasegawa
Chapter
Part of the Primatology Monographs book series (PrimMono)

Abstract

Primate evolution draws special attention because of its direct relevance to human origins. However, there are still several phylogenetic problems remaining among the primates. Recent molecular evolution studies using nuclear and mitochondrial DNA data seem to have established a consensus with respect to the phylogenetic positions of various primates. In addition, the presence/absence patterns of the short interspersed elements (SINE), which are regarded to be informative molecular cladistic markers, strongly supported the phylogenetic placement of several problematic species. Although the phylogenetic relationships of living primate species are relatively well established, the divergence times among them are still controversial. This controversy has arisen partly because different authors have used different molecular data with different methods and calibration points. Here, we review recent molecular phylogenetic studies of primates together with our own study. Furthermore, we compare and discuss the divergence times estimated for various primate species.

Keywords

Mitochondrial Genome Sister Clade Sister Relationship Recent Molecular Study Hanuman Langur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

K/T

Cretaceous/tertiary

Mya

Million years ago

NWM

New World monkey

OWM

Old World monkey

R

Purines (adenine and guanine)

rRNA

Ribosomal RNA

SINE

Short interspersed element

Y

Pyrimidines (cytosine and thymine)

References

  1. Adkins RM, Honeycutt RL (1994) Evolution of the primate cytochrome c oxidase subunit II gene. J Mol Evol 38:215–231PubMedGoogle Scholar
  2. Aiello LC, Collard M (2001) Palaeoanthropology Our newest oldest ancestor? Nature 410:526–527PubMedGoogle Scholar
  3. Arnason U, Adegoke JA, Bodin K et al (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156Google Scholar
  4. Barroso CML, Schneider H, Schneider MPC et al (1997) Update on the phylogenetic systematics of new world monkeys: further DNA evidence for placing the pygmy marmoset (Cebuella) within the genus Callithrix. Int J Primatol 18:651–674Google Scholar
  5. Begun DR, Ward CV, Rose MD (1997) Events in hominoid evolution. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: miocene hominoid evolution and adaptation. Plenum, New YorkGoogle Scholar
  6. Bigoni F, Stanyon R, Wimmer R et al (2003) Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian colobines. Am J Primatol 60:85–93PubMedGoogle Scholar
  7. Bigoni F, Houck M, Ryder O et al (2004) Chromosome painting shows that Pygathrix nemaeus has the most basal karyotype among Asian Colobinae. Int J Primatol 25:679–688Google Scholar
  8. Brandon-Jones D, Eudey AA, Geissmann T et al (2004) An Asian primate classification. Int J Primatol 25:97–164Google Scholar
  9. Brunet M, Guy F, Pilbeam D et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151Google Scholar
  10. Canavez FC, Moreira MAM, Ladasky JJ et al (1999a) Molecular phylogeny of new world primates (Platyrrhini) based on beta2-microglobulin DNA sequences. Mol Phylogenet Evol 12:74–82PubMedGoogle Scholar
  11. Canavez FC, Moreira MAM, Simon F et al (1999b) Phylogenetic relationships of the Callitrichinae (Platyrrhini, primates) based on beta2-microglobulin DNA sequences. Am J Primatol 48:225–236PubMedGoogle Scholar
  12. Chan YC, Roos C, Inoue-Murayama M et al (2010) Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS One 5:e14419PubMedGoogle Scholar
  13. Chatterjee HJ, Ho SY, Barnes I et al (2009) Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9:259PubMedGoogle Scholar
  14. Chaves R, Sampaio I, Schneider MP et al (1999) The place of Callimico goeldii in the callitrichine phylogenetic tree: evidence from von Willenbrand factor gene intron II sequences. Mol Phylogenet Evol 13:392–404PubMedGoogle Scholar
  15. Chivers DJ, Hladik CM (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:377–386Google Scholar
  16. Collins AC (2004) Atelinae phylogenetic relationships: the trichotomy revived? Am J Phys Anthropol 124:285–296PubMedGoogle Scholar
  17. Collura RV, Auerbach MR, Stewart CB (1996) A quick, direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes. Curr Biol 6:1337–1339PubMedGoogle Scholar
  18. Davenport TR, Stanley WT, Sargis EJ et al (2006) A new genus of African monkey, Rungwecebus: morphology, ecology, and molecular phylogenetics. Science 312:1378–1381PubMedGoogle Scholar
  19. Delson E (1980) Fossil macaques phyletic relationships and a scenario of development. In: Lindburg DG (ed) The macaques: studies in ecology, behavior, and evolution. Van Nostrand Reinhold, New YorkGoogle Scholar
  20. Delson E (1992) Evolution of old world monkeys. In: Johns JS, Martin RD, Pilbeam D et al (eds) The Cambridge encyclopedia of human evolution. Cambridge University Press, CambridgeGoogle Scholar
  21. Delson E (1994) Evolutionary history of the colobine monkeys in paleoenvironmental perspective. In: Oates JF, Davies AG (eds) Colobine monkeys: their ecology, behaviour, and evolution. Cambridge University Press, CambridgeGoogle Scholar
  22. Delson E (2000) Colobinae. In: Delson E, Tattersall I, Van Couvering JA et al (eds) Encyclopedia of human evolution and prehistory, 2nd edn. Garland, New YorkGoogle Scholar
  23. Disotell TR (1994) Generic level relationships of the Papionini (Cercopithecoidea). Am J Phys Anthropol 94:47–57Google Scholar
  24. Disotell TR (2003) Primates: phylogenetics. Nature Publishing Group, London, Encyclopedia of the human genomeGoogle Scholar
  25. Disotell TR, Raaum RL (2002) Molecular timescale and gene tree incongruence in the guenons. In: Glenn ME, Cords M (eds) The guenons: diversity and adaptation in African monkeys. Kluwer, New YorkGoogle Scholar
  26. Dutrillaux B, Muleris M, Couturier J (1988) Chromosomal evolution of Cercopithecinae. In: Gautier-Hion A, Bourliere F, Gautier JP et al (eds) A primate radiation: evolutionary biology of the African guenons. Cambridge University Press, New YorkGoogle Scholar
  27. Eizirik E, Murphy WJ, O’Brien SJ (2001) Molecular dating and biogeography of the early placental mammal radiation. J Hered 92:212–219PubMedGoogle Scholar
  28. Fa JE (1989) The genus Macaca: a review of taxonomy and evolution. Mamm Rev 19:45–81Google Scholar
  29. Fabre PH, Rodrigues A, Douzery EJ (2009) Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53:808–825PubMedGoogle Scholar
  30. Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  31. Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic, San DiegoGoogle Scholar
  32. Fleagle JG, McGraw WS (1999) Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proc Natl Acad Sci USA 96:1157–1161PubMedGoogle Scholar
  33. Fooden J (1976) Provisional classifications and key to living species of macaques (primates: Macaca). Folia Primatol (Basel) 25:225–236Google Scholar
  34. Gibson A, Gowri-Shankar V, Higgs PG et al (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22:251–264PubMedGoogle Scholar
  35. Goodman M, Porter CA, Czelusniak J et al (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598PubMedGoogle Scholar
  36. Groves CP (1970) The forgotten leaf-eaters, and the phylogeny of the Colobinae. In: Napier JR, Napier PH (eds) Old World monkeys: evolution, systematics, and behavior. Academic, New YorkGoogle Scholar
  37. Groves CP (1978) Phylogenetic and populations systematics of the mangabeys (Primates: Cercopithecoidea). Primates 19:1–34Google Scholar
  38. Groves CP (1989) A theory of human and primate evolution. Oxford University Press, New YorkGoogle Scholar
  39. Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington, DCGoogle Scholar
  40. Groves CP (2005) Order Primates. In: Wilson DE, Reeder DM (eds) Mammal species of the world, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  41. Haile-Selassie Y (2001) Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412:178– 81Google Scholar
  42. Harada ML, Schneider H, Schneider MP et al (1995) DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol Phylogenet Evol 4:331–349PubMedGoogle Scholar
  43. Harris EE, Disotell TR (1998) Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini). Mol Biol Evol 15:892–900PubMedGoogle Scholar
  44. Hasegawa M, Thorne JL, Kishino H (2003) Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet Syst 78:267–283PubMedGoogle Scholar
  45. Hayasaka K, Fujii K, Horai S (1996) Molecular phylogeny of macaques: implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol Biol Evol 13:1044–1053PubMedGoogle Scholar
  46. Hedges SB, Parker PH, Sibley CG et al (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature (Lond) 381:226–229Google Scholar
  47. Hodgson JA, Sterner KN, Matthews LJ et al (2009) Successive radiations, not stasis, in the South American primate fauna. Proc Natl Acad Sci USA 106:5534–5539PubMedGoogle Scholar
  48. Horai S, Hayasaka K, Kondo R et al (1995) The recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536PubMedGoogle Scholar
  49. Horovitz I, Meyer A (1995) Systematics of New World monkeys (Platyrrhini, primates) based on 16 S mitochondrial DNA sequences: a comparative analysis of different weighting methods in cladistic analysis. Mol Phylogenet Evol 4:448–456PubMedGoogle Scholar
  50. Horovitz I, Zardoya R, Meyer A (1998) Platyrrhine systematics: a simultaneous analysis of molecular and morphological data. Am J Phys Anthropol 106:261–281PubMedGoogle Scholar
  51. Horvath JE, Weisrock DW, Embry SL et al (2008) Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar’s lemurs. Genome Res 18:489–499PubMedGoogle Scholar
  52. Hudelot C, Gowri-Shankar V, Jow H et al (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol 28:241–252PubMedGoogle Scholar
  53. Israfil H, Zehr SM, Mootnick AR et al (2011) Unresolved molecular phylogenies of gibbons and siamangs (family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455PubMedGoogle Scholar
  54. Jablonski N (1998) The evolution of the doucs and snub-nosed monkeys and the question of the phyletic unity of the odd-nosed colobines. In: Jablonski N (ed) Natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, New JerseyGoogle Scholar
  55. Jablonski NG, Peng YZ (1993) The phylogenetic relationships and classification of the doucs and snub-nosed langurs of China and Vietnam. Folia Primatol 60:36–55PubMedGoogle Scholar
  56. Jow H, Hudelot C, Rattray M et al (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol 19:1591–1601PubMedGoogle Scholar
  57. Karanth KP, Singh L, Collura RV et al (2008) Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Mol Phylogenet Evol 46:683–694Google Scholar
  58. Karanth KP, Delefosse T, Rakotosamimanana B et al (2005) Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates. Proc Natl Acad Sci USA 102:5090–5095PubMedGoogle Scholar
  59. Kelley J (2002) The hominoid radiation in Asia. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, CambridgeGoogle Scholar
  60. Li J, Han K, Xing J et al (2009) Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene (Amst) 448:242–249Google Scholar
  61. Martin RD (1993) Primate origins: plugging the gaps. Nature (Lond) 363:223–234Google Scholar
  62. Martin RD (2003) Combing the primate record. Nature (Lond) 422:388–391Google Scholar
  63. Masters JC, Anthony NM, de Wit MJ et al (2005) Reconstructing the evolutionary history of the Lorisidae using morphological, molecular, and geological data. Am J Phys Anthropol 127:465–480PubMedGoogle Scholar
  64. Masters JC, Boniotto M, Crovella S et al (2007) Phylogenetic relationships among the Lorisoidea as indicated by craniodental morphology and mitochondrial sequence data. Am J Primatol 69:6–15PubMedGoogle Scholar
  65. Matsudaira K, Ishida T (2010) Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera. Mol Phylogenet Evol 55:454–459PubMedGoogle Scholar
  66. Matsui A, Rakotondraparany F, Hasegawa M et al (2007) Determination of a complete lemur mitochondrial genome from feces. Mamm Study 32:7–16Google Scholar
  67. Matsui A, Rakotondraparany F, Munechika I et al (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene (Amst) 441:53–66Google Scholar
  68. Meireles CM, Czelusniak J, Schneider MPC et al (1999) Molecular phylogeny of ateline new world monkeys (Platyrrhini, Atelinae) based on gamma-globin gene sequences: evidence that Brachyteles is the sister group of Lagothrix. Mol Phylogenet Evol 12:10–30PubMedGoogle Scholar
  69. Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature (Lond) 385:151–154Google Scholar
  70. Mootnick A, Groves CP (2005) A new generic name for the hoolock gibbon (Hylobatidae). Int J Primatol 26:971–976Google Scholar
  71. Morales JC, Melnick DJ (1998) Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J Hum Evol 34:1–23PubMedGoogle Scholar
  72. Murphy WJ, Eizirik E, Johnson WE et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature (Lond) 409:614–618Google Scholar
  73. Ni X, Wang Y, Hu Y et al (2004) A euprimate skull from the early Eocene of China. Nature (Lond) 427:65–68Google Scholar
  74. Opazo JC, Wildman DE, Prychitko T et al (2006) Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 40:274–280PubMedGoogle Scholar
  75. Osterholz M, Walter L, Roos C (2008) Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evol Biol 8:58PubMedGoogle Scholar
  76. Oxnard CE (1981) The uniqueness of Daubentonia. Am J Phys Anthropol 54:1–21Google Scholar
  77. Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phyl Evol 18:14–25Google Scholar
  78. Page SL, Chiu C, Goodman M (1999) Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences. Mol Phylogenet Evol 13:348–359PubMedGoogle Scholar
  79. Pastorini J, Forstner MR, Martin RD (2002) Phylogenetic relationships among Lemuridae (Primates): evidence from mtDNA. J Hum Evol 43:463–478PubMedGoogle Scholar
  80. Pastorini J, Thalmann U, Martin RD (2003) A molecular approach to comparative phylogeography of extant Malagasy lemurs. Proc Natl Acad Sci USA 13:5879–5884Google Scholar
  81. Peng YZ, Pan RL, Jablonski NG (1993) Classification and evolution of Asian colobines. Folia Primatol (Basel) 60:106–117Google Scholar
  82. Perelman P, Johnson WE, Roos C et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342PubMedGoogle Scholar
  83. Phillips MJ, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28:171–185PubMedGoogle Scholar
  84. Pilbeam D, Rose MD, Barry JC et al (1990) New Sivapithecus humeri from Pakistan and the relationship of Sivapithecus and Pongo. Nature (Lond) 348:237–239Google Scholar
  85. Porter CA, Sampaio I, Schneider H et al (1995) Evidence on primate phylogeny from ε-globin gene sequences and flanking regions. J Mol Evol 40:30–55PubMedGoogle Scholar
  86. Porter CA, Page SL, Czelusniak J et al (1997a) Phylogeny and evolution of selected primates as determined by sequences of the ε-globin locus and 50 flanking regions. Int J Primatol 18:261–295Google Scholar
  87. Porter CA, Czelusniak J, Schneider H et al (1997b) Sequence of the primate epsilon-globin gene: implication for systematics of the marmosets and other new world primates. Gene (Amst) 205:59–71Google Scholar
  88. Porter CA, Czelusniak J, Schneider H et al (1999) Sequence from the 5′ flanking region of the epsilon-globin gene support the relationship of Callicebus with the Pitheciins. Am J Primatol 48:69–75PubMedGoogle Scholar
  89. Poux C, Douzery EJ (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1–16PubMedGoogle Scholar
  90. Poux C, Madsen O, Marquard E et al (2005) Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. Syst Biol 54:719–730PubMedGoogle Scholar
  91. Poux C, Chevret P, Huchon D et al (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55:228–244PubMedGoogle Scholar
  92. Prychitko T, Johnson RM, Wildman DE et al (2005) The phylogenetic history of New World monkey beta globin reveals a platyrrhine beta to delta gene conversion in the atelid ancestry. Mol Phylogenet Evol 35:225–234PubMedGoogle Scholar
  93. Raaum RL, Sterner KN, Noviello CM et al (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257PubMedGoogle Scholar
  94. Ray DA, Xing J, Hedges DJ et al (2005) Alu insertion loci and platyrrhine primate phylogeny. Mol Phylogenet Evol 35:117–126PubMedGoogle Scholar
  95. Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19:486–494PubMedGoogle Scholar
  96. Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci USA 101:10650–10654PubMedGoogle Scholar
  97. Rosenberger AL, Hartwig WC, Wolff RG (1991) Szalatavus attricuspis, an early platyrrhine primate. Folia Primatol (Basel) 56:225–233Google Scholar
  98. Rumpler Y, Warter S, Petter JJ et al (1988) Chromosomal evolution of Malagasy lemurs. XI. Phylogenetic position of Daubentonia madagascariensis. Folia Primatol (Basel) 50:124–129Google Scholar
  99. Ruvolo M (1988) Genetic evolution in the African guenons. In: Gautier-Hion A, Bourliere F, Gautier JP et al (eds) A primate radiation: evolutionary biology of the African guenons. Cambridge University Press, New YorkGoogle Scholar
  100. Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784PubMedGoogle Scholar
  101. Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553PubMedGoogle Scholar
  102. Schneider H (2000) The current status of the New World monkey phylogeny. An Acad Bras Cienc 72:165–172PubMedGoogle Scholar
  103. Schneider H, Schneider MPC, Sampaio I et al (1993) Molecular phylogeny of the new world monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 2:225–242PubMedGoogle Scholar
  104. Schneider H, Sampaio I, Harada ML et al (1996) Molecular phylogeny of the New World monkeys (Platyrrhini, primates) based on two unlinked nuclear genes: IRBP intron 1 and epsilon-globin sequences. Am J Phys Anthropol 100:153–179PubMedGoogle Scholar
  105. Schwartz JH (1992) Topics in primatology. In: Matano S, Tuttle RH, Ishida H et al (eds) Evolutionary biology, reproductive endocrinology, and virology. University of Tokyo Press, TokyoGoogle Scholar
  106. Seiffert ER, Simons EL, Attia Y (2003) Fossil evidence for an ancient divergence of lorises and galagos. Nature (Lond) 422:421–424Google Scholar
  107. Singer SS, Schmitz J, Schwiegk C et al (2003) Molecular cladistic markers in the new world monkey phylogeny (Platyrrhini, Primates). Mol Phylogenet Evol 26:490–501PubMedGoogle Scholar
  108. Springer MS, Murphy WJ, Eizirik E et al (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061PubMedGoogle Scholar
  109. Steiper ME, Ruvolo M (2003) New world monkey phylogeny based on X-linked G6PD DNA sequences. Mol Phylogenet Evol 27:121–130PubMedGoogle Scholar
  110. Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394PubMedGoogle Scholar
  111. Sterner KN, Raaum RL, Zhang YP et al (2006) Mitochondrial data support an odd-nosed colobine clade. Mol Phylogenet Evol 40:1–7PubMedGoogle Scholar
  112. Stewart C, Disotell T (1998) Primate evolution in and out of Africa. Curr Biol 8:R582–R588PubMedGoogle Scholar
  113. Strasser E, Delson E (1987) Cladistic analysis of cercopithecid relationships. J Hum Evol 16:81–99Google Scholar
  114. Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic, New YorkGoogle Scholar
  115. Takacs Z, Morales JC, Geissmann T et al (2005) A complete species-level phylogeny of the Hylobatidae based on mitochondrial ND3-ND4 gene sequences. Mol Phylogenet Evol 36:456–467PubMedGoogle Scholar
  116. Tavaré S, Marshall CR, Will O et al (2002) Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature (Lond) 416:726–729Google Scholar
  117. Thinh VN, Mootnick AR, Geissmann T et al (2010) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74PubMedGoogle Scholar
  118. Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702PubMedGoogle Scholar
  119. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657PubMedGoogle Scholar
  120. Ting N (2008) Mitochondrial relationships and divergence dates of the African colobines: evidence of Miocene origins for the living colobus monkeys. J Hum Evol 55:312–325PubMedGoogle Scholar
  121. Ting N, Tosi AJ, Li Y et al (2008) Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys. Mol Phylogenet Evol 46:466–474PubMedGoogle Scholar
  122. Tosi AJ, Morales JC, Melnick DJ (2000) Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Mol Phylogenet Evol 17:133–144PubMedGoogle Scholar
  123. Tosi AJ, Buzzard PJ, Morales JC et al (2002) Y-chromosome data and tribal affiliations of Allenopithecus and Miopithecus. Int J Primatol 23:1287–1299Google Scholar
  124. Tosi AJ, Disotell TR, Morales JC et al (2003) Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Mol Phylogenet Evol 27:510–521PubMedGoogle Scholar
  125. Tosi AJ, Melnick DJ, Disotell TR (2004) Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini). J Hum Evol 46:223–237PubMedGoogle Scholar
  126. Tosi AJ, Detwiler KM, Disotell TR (2005) X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Mol Phylogenet Evol 36:58–66PubMedGoogle Scholar
  127. von Dornum M, Ruvolo M (1999) Phylogenetic relationships of the New World monkeys (primates, Platyrrhini) based on nuclear G6PD DNA sequences. Mol Phylogenet Evol 11:459–476Google Scholar
  128. Waddell P, Penny D (1996) Evolutionary trees of apes and humans from DNA sequences. In: Lock AJ, Peters CR (eds) Handbook of human symbolic evolution. Oxford University Press, OxfordGoogle Scholar
  129. Wang W, Su B, Lan H et al (1995) Phylogenetic relationships among two species of golden monkey and three species of leaf monkey inferred from rDNA variation. Folia Primatol (Basel) 65:138–143Google Scholar
  130. Ward S (1997) The taxonomy and phylogenetic relationships of Sivapithecus revisited. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils. Plenum, New YorkGoogle Scholar
  131. Xing J, Wang H, Han K et al (2005) A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 37:872–880PubMedGoogle Scholar
  132. Yoder AD (1994) Relative position of the Cheirogaleidae in strepsirrhine phylogeny: a comparison of morphological and molecular methods and results. Am J Phys Anthropol 94:25–46PubMedGoogle Scholar
  133. Yoder AD, Cartmill M, Ruvolo M et al (1996) Ancient single origin for Malagasy primates. Proc Natl Acad Sci USA 93:5122–5126PubMedGoogle Scholar
  134. Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424PubMedGoogle Scholar
  135. Yoder AD, Burns MM, Zehr S et al (2003) Single origin of Malagasy Carnivora from an African ancestor. Nature (Lond) 421:734–737Google Scholar
  136. Zhang Y, Ryder O (1998) Mitochondrial cytochrome b gene sequences of Old World monkeys: with special reference on evolution of Asian colobines. Primates 39:39–49Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Biology, Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.School of Life SciencesFudan UniversityShanghaiChina
  3. 3.The Institute of Statistical MathematicsTachikawa, TokyoJapan

Personalised recommendations