Chromosomal Evolution of Gibbons (Hylobatidae)

  • Stefan Müller
  • Johannes Wienberg
Part of the Primatology Monographs book series (PrimMono)


This chapter discusses the evolutionary aspects of chromosomal genome organization in gibbons (Hylobatidae, lesser or small apes), which, together with the great apes and humans, are included in the superfamily Hominoidea. Each of the four recognized gibbon genera shows a different karyomorph, with chromosome numbers ranging between 2n = 38 in the hoolock gibbon and 2n = 52 in the white-cheeked gibbon. An overview is provided about the dramatic lineage-specific chromosomal rearrangements in gibbons, which is unparalleled among primates. We further review the reported chromosomal differences observed between the four genera, present the inferred ancestral gibbon karyotype, and highlight recent attempts to reconstruct a gibbon chromosomal phylogeny. Finally, present knowledge on the molecular structure of evolutionary chromosome breakpoints, on the nuclear genome organisation, as well as on genomic and epigenomic changes in this group of higher primates, is summarized.


Chromosome Painting Syntenic Association Gibbon Species Bacterial Artificial Clone Hoolock Gibbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bacterial artificial chromosome


Fluorescence in situ hybridization


Whole-arm translocation


  1. Arnold ML, Meyer A (2006) Natural hybridization in primates: one evolutionary mechanism. Zoology (Jena) 109:261–276Google Scholar
  2. Arnold N, Stanyon R, Jauch A et al (1996) Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting. Cytogenet Cell Genet 74:80–85PubMedCrossRefGoogle Scholar
  3. Brandon-Jones D, Eudey AA, Geissmann T et al (2004) Asian primate classification. Int J Primatol 25:97–164CrossRefGoogle Scholar
  4. Carbone L, Vessere GM, ten Hallers BF et al (2006) A high-resolution map of synteny disruptions in gibbon and human genomes. PLoS Genet 2:e223PubMedCrossRefGoogle Scholar
  5. Carbone L, Harris RA, Vessere GM et al (2009a) Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5:e1000538PubMedCrossRefGoogle Scholar
  6. Carbone L, Mootnick AR, Nadler T et al (2009b) A chromosomal inversion unique to the northern white-cheeked gibbon. PLoS One 4:e4999PubMedCrossRefGoogle Scholar
  7. Couturier J, Lernould JM (1991) Karyotypic study of four gibbon forms provisionally considered as subspecies of Hylobates (Nomascus) concolor (Primates, Hylobatidae). Folia Primatol (Basel) 56:95–104CrossRefGoogle Scholar
  8. Couturier J, Dutrillaux B, Turleau C et al (1982) Comparative karyotyping of our gibbon species or subspecies (author’s translaation). Ann Genet 25:5–10PubMedGoogle Scholar
  9. de Grouchy J, Turleau C, Finaz C (1978) Chromosomal phylogeny of the primates. Annu Rev Genet 12:289–328PubMedCrossRefGoogle Scholar
  10. Dutrillaux B, Rethore MO, Aurias A et al (1975) Karyotype analysis of 2 species of gibbons (Hylobates lar and H. concolor) with different banding species. Cytogenet Cell Genet 15:81–91PubMedCrossRefGoogle Scholar
  11. Fiegler H, Gribble SM, Burford DC et al (2003) Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J Med Genet 40:664–670PubMedCrossRefGoogle Scholar
  12. Garza JC, Woodruff DS (1992) A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Mol Phylogenet Evol 1:202–210PubMedCrossRefGoogle Scholar
  13. Girirajan S, Chen L, Graves T et al (2009) Sequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites. Genome Res 19:178–190PubMedCrossRefGoogle Scholar
  14. Goodman M (1999) The genomic record of humankind’s evolutionary roots. Am J Hum Genet 64:31–39PubMedCrossRefGoogle Scholar
  15. Hirai H, Hirai Y, Domae H et al (2007) A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar. Hum Genet 122:477–483PubMedCrossRefGoogle Scholar
  16. Jauch A, Wienberg J, Stanyon R et al (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615PubMedCrossRefGoogle Scholar
  17. Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120:759–778PubMedCrossRefGoogle Scholar
  18. Kemkemer C, Kohn M, Cooper DN et al (2009) Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. BMC Evol Biol 9:84PubMedCrossRefGoogle Scholar
  19. Koehler U, Arnold N, Wienberg J et al (1995a) Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization. Am J Phys Anthropol 97:37–47PubMedCrossRefGoogle Scholar
  20. Koehler U, Bigoni F, Wienberg J et al (1995b) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30:287–292PubMedCrossRefGoogle Scholar
  21. Marks J (1982) Evolutionary tempo and phylogenetic inference based on primate karyotypes. Cytogenet Cell Genet 34:261–264PubMedCrossRefGoogle Scholar
  22. Mootnick A (2006) Gibbon (Hylobatidae) species identification recommended for rescue or breeding centers. Primate Conserv 21:103–138CrossRefGoogle Scholar
  23. Mootnick A, Groves C (2005) A new generic name for the hoolock gibbon (Hylobatidae). Int J Primatol 26:971–975CrossRefGoogle Scholar
  24. Müller S, Wienberg J (2001) “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109:85–94PubMedCrossRefGoogle Scholar
  25. Müller S, O’Brien PC, Ferguson-Smith MA et al (1998) Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33:445–452PubMedCrossRefGoogle Scholar
  26. Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501PubMedCrossRefGoogle Scholar
  27. Myers RH, Shafer DA (1979) Hybrid ape offspring of a mating of gibbon and siamang. Science 205:308–310PubMedCrossRefGoogle Scholar
  28. Napier J, Napier P (1967) A handbook of living primates. Academic Press, LondonGoogle Scholar
  29. Neusser M, Schubel V, Koch A et al (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma (Berl) 116:307–320CrossRefGoogle Scholar
  30. Nie W, Rens W, Wang J et al (2001) Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes. Cytogenet Cell Genet 92:248–253PubMedCrossRefGoogle Scholar
  31. Roberto R, Capozzi O, Wilson RK et al (2007) Molecular refinement of gibbon genome rearrangements. Genome Res 17:249–257PubMedCrossRefGoogle Scholar
  32. Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19(3):486–494Google Scholar
  33. Roos C, Thanh VN, Walker L, Nadler T (2007) Molecular systematics of Indochinese primates. Vietn J Primatol 1:41–53Google Scholar
  34. Schröck E, du Manoir S, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497PubMedCrossRefGoogle Scholar
  35. Stanyon R (1983) A test of the karyotypic fissioning theory of primate evolution. Biosystems 16:57–63PubMedCrossRefGoogle Scholar
  36. Stanyon R, Sineo L, Chiarelli B et al (1987) Banded karyotypes of the 44-chromosome gibbons. Folia Primatol (Basel) 48:56–64CrossRefGoogle Scholar
  37. Stanyon R, Rocchi M, Capozzi O et al (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39PubMedCrossRefGoogle Scholar
  38. Takacs Z, Morales JC, Geissmann T et al (2005) A complete species-level phylogeny of the Hylobatidae based on mitochondrial ND3-ND4 gene sequences. Mol Phylogenet Evol 36:456–467PubMedCrossRefGoogle Scholar
  39. Tanabe H, Müller S, Neusser M et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99:4424–4429PubMedCrossRefGoogle Scholar
  40. Van Tuinen P, Ledbetter DH (1983) Cytogenetic comparison and phylogeny of three species of Hylobatidae. Am J Phys Anthropol 61:453–466PubMedCrossRefGoogle Scholar
  41. Van Tuinen P, Mootnick AR, Kingswood SC et al (1999) Complex, compound inversion/translocation polymorphism in an ape: presumptive intermediate stage in the karyotypic evolution of the agile gibbon Hylobates agilis. Am J Phys Anthropol 110:129–142PubMedCrossRefGoogle Scholar
  42. Wienberg J, Jauch A, Stanyon R et al (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350PubMedCrossRefGoogle Scholar
  43. Wienberg J, Stanyon R, Jauch A et al (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma (Berl) 101:265–270CrossRefGoogle Scholar
  44. Yu D, Yang F, Liu R (1997) A comparative chromosome map between human and Hylobates hoolock built by chromosome painting. Yi Chuan Xue Bao 24:417–423PubMedGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Institut für HumangenetikKlinikum der Ludwig-Maximilians-UniversitätMunichGermany
  2. 2.Anthropology and Human Genetics, Department of Biology IILudwig-Maximilians-UniversitätMunichGermany
  3. 3.Chrombios GmbHRaublingGermany

Personalised recommendations