Skip to main content

Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres

  • Chapter
  • First Online:
Post-Genome Biology of Primates

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (“evolutionary new centromere” ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BACs:

Bacterial artificial chromosomes

BES:

Bacterial artificial chromosome end sequences

BLAST:

Basic local alignment search tool

CAR:

Contiguous ancestral regions

ChIP:

Chromatin immunoprecipitation

DOP-PCR:

Degenerate oligonucleotide primed-PCR

ENC:

Evolutionary new centromere

FACS:

Fluorescence-activated cell sorter

FISH:

Fluorescent in situ hybridization DNA

PAC:

P1 artificial chromosomes

SB:

Synteny block

WCP:

Whole chromosome paints

YAC:

Yeast artificial chromosomes

References

  • Amor DJ, Bentley K, Ryan J et al (2004) Human centromere repositioning “in progress”. Proc Natl Acad Sci USA 101:6542–6547

    Article  PubMed  CAS  Google Scholar 

  • Bigoni F, Koehler U, Stanyon R et al (1997a) Fluorescence in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol 102:315–327

    Article  PubMed  CAS  Google Scholar 

  • Bigoni F, Stanyon R, Koehler U et al (1997b) Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization. Am J Primatol 42:289–298

    Article  PubMed  CAS  Google Scholar 

  • Capozzi O, Purgato S, Verdun di Cantogno L et al (2008) Evolutionary and clinical neocentromeres: two faces of the same coin? Chromosoma (Berl) 117:339–344

    Article  CAS  Google Scholar 

  • Capozzi O, Purgato S, D’Addabbo P et al (2009) Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res 19:778–784

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E et al (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87:777–782

    Article  PubMed  CAS  Google Scholar 

  • Cardone MF, Alonso A, Pazienza M et al (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91

    Article  PubMed  Google Scholar 

  • Caspersson T, Zech L, Johansson C et al (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma (Berl) 30:215–227

    Article  CAS  Google Scholar 

  • Chu EHY, Bender MA (1961) Chromosome cytology and evolution in primates. Science 133:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) Origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dumas F, Stanyon R, Sineo L et al (2007) Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol Biol 7(suppl 2):S11

    Article  PubMed  Google Scholar 

  • Dumas F, Houck ML, Bigoni F et al (2012) Chromosome painting of the pygmy tree shrew shows that no derived cytogenetic traits link Primates and Scandentia. Cytogenet Genome Res (in press)

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Finaz C, de Grouchy J et al (1972) Comparison of banding patterns of human chromosomes obtained with heating, fluorescence, and proteolytic digestion. Cytogenetics 11:113–116

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Viegas-Pequignot E, Couturier J (1980) Great homology of chromosome banding of the rabbit (Oryctolagus cuniculus) and primates, including man (author’s translation. Ann Genet 23:22–25

    PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Yang F, Rens W et al (2005) The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet Genome Res 108:112–121

    Article  PubMed  CAS  Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Han Y, Zhang Z, Liu C et al (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA 106:14937–14941

    Article  PubMed  CAS  Google Scholar 

  • Huxley TH (1863) Evidence as to man’s place in nature. Williams & Norwood, London

    Google Scholar 

  • Jauch A, Wienberg J, Stanyon R et al (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615

    Article  PubMed  CAS  Google Scholar 

  • Koehler U, Arnold N, Wienberg J et al (1995a) Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization. Am J Phys Anthropol 97:37–47

    Article  PubMed  CAS  Google Scholar 

  • Koehler U, Bigoni F, Wienberg J et al (1995b) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30:287–292

    Article  PubMed  CAS  Google Scholar 

  • Lomiento M, Jiang Z, D’Addabbo P et al (2008) Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol 9:R173

    Article  PubMed  Google Scholar 

  • Makino S (1952) A contribution to the study of the chromosomes in some Asiatic mammals. Cytologia 16:288–301

    Article  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH et al (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    Article  PubMed  CAS  Google Scholar 

  • Misceo D, Capozzi O, Roberto R et al (2008) Tracking the complex flow of chromosome rearrangements from the Hominoidea ancestor to extant Hylobates and Nomascus gibbons by high-resolution synteny mapping. Genome Res 18:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Montefalcone G, Tempesta S, Rocchi M et al (1999) Centromere repositioning. Genome Res 9:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Müller S, O’Brien PC, Ferguson-Smith MA et al (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271

    Article  PubMed  Google Scholar 

  • Müller S, Stanyon R, O’Brien PC et al (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma (Berl) 108:393–400

    Article  Google Scholar 

  • Müller S, Stanyon R, Finelli P et al (2000) Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution. Proc Natl Acad Sci USA 97:206–211

    Article  PubMed  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Murphy WJ, Fronicke L, O’Brien SJ et al (2003) The origin of human chromosome 1 and its homologs in placental mammals. Genome Res 13:1880–1888

    PubMed  CAS  Google Scholar 

  • Neusser M, Stanyon R, Bigoni F et al (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini): comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94:206–215

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Liu R, Chen Y et al (1998) Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res 6:447–453

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Rens W, Wang J et al (2001) Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes. Cytogenet Cell Genet 92:248–253

    Article  PubMed  CAS  Google Scholar 

  • Nie W, O’Brien PC, Fu B et al (2006) Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype. Am J Phys Anthropol 129:250–259

    Article  PubMed  Google Scholar 

  • Nie W, Fu B, O’Brien PC et al (2008) Flying lemurs – the ‘flying tree shrews’? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biol 6:18

    Article  PubMed  Google Scholar 

  • O’Brien SJ, Nash WG (1982) Genetic mapping in mammals: chromosome map of domestic cat. Science 216:257–265

    Article  PubMed  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK et al (2007) Molecular refinement of gibbon genome rearrangement. Genome Res 17:249–257

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Misceo D, D’Addabbo P et al (2008) Refinement of macaque synteny arrangement with respect to the official rheMac2 macaque sequence assembly. Chromosome Res 16:977–985

    Article  PubMed  CAS  Google Scholar 

  • Rocchi M, Archidiacono N, Stanyon R (2006) Ancestral genomes reconstruction: an integrated, multi-disciplinary approach is needed. Genome Res 16:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Saffery R, Sumer H, Hassan S et al (2003) Transcription within a functional human centromere. Mol Cell 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • She X, Horvath JE, Jiang Z et al (2004) The structure and evolution of centromeric transition regions within the human genome. Nature (Lond) 430:857–864

    Article  CAS  Google Scholar 

  • Shiwago P (1939) Recherches sur le caryotype du Rhesus macacus. Bull Biol Med Exp (USSR) 9:3–8

    Google Scholar 

  • Stanyon R, Stone G (2008) Phylogenomic analysis by chromosome sorting and painting. Methods Mol Biol 422:13–29

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Wienberg J, Romagno D et al (1992) Molecular and classical cytogenetic analyses demonstrate an apomorphic reciprocal chromosomal translocation in Gorilla gorilla. Am J Phys Anthropol 88:245–250

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Bonvicino CR, Svartman M et al (2003) Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n  =  16) known in primates. Chromosoma (Berl) 112:201–206

    Article  CAS  Google Scholar 

  • Stanyon R, Bruening R, Stone G et al (2005) Reciprocal painting between humans, De Brazza’s and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree. Cytogenet Genome Res 108:175–182

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Dumas F, Stone G et al (2006) Multidirectional chromosome painting reveals a remarkable syntenic homology between the greater galagos and the slow loris. Am J Primatol 68:349–359

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Rocchi M, Capozzi O et al (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39

    Article  PubMed  CAS  Google Scholar 

  • Stock AD, Hsu TC (1973) Evolutionary conservatism in arrangement of genetic material. A comparative analysis of chromosome banding between the rhesus macaque (2n equals 42, 84 arms) and the African green monkey (2n equals 60, 120 arms). Chromosoma (Berl) 43:211–224

    Article  CAS  Google Scholar 

  • Svartman M, Stone G, Page JE et al (2004) A chromosome painting test of the basal eutherian karyotype. Chromosome Res 12:45–53

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V et al (2003) Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L et al (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF et al (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R, Jauch A et al (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma (Berl) 101:265–270

    Article  CAS  Google Scholar 

  • Yeager CH, Painter TS, Yerkes RM (1940) The chromosomes of the chimpanzee. Science 91:74–75

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Yang F, Liu R (1997) A comparative chromosome map between human and Hylobates hoolock built by chromosome painting. Yi Chuan Xue Bao 24:417–423

    PubMed  CAS  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roscoe Stanyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Stanyon, R., Archidiacono, N., Rocchi, M. (2012). Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_13

Download citation

Publish with us

Policies and ethics