Exceeding the Limits: Behavioral Enhancement Via External Influence

  • Katsumi Watanabe


Recent studies in cognitive neuroscience point to the possibility that external factors we are not necessarily aware of can augment our perception, cognition, and actions. This chapter described two examples of behavioral limits being overcome by the use of external factors: (1) transcranial direct current stimulation (tDCS) and (2) behavioral speed contagion. The use of tDCS to improve cognitive and motor function has been increasingly investigated in double-blind sham-controlled studies. The facilitation effects of anodal tDCS may have great potential for enhancement of cognitive and motor function beyond normal limits or in clinical applications for neuro-rehabilitation. Behavioral speed contagion is an example of unconscious mimicry of an observed behavior, which forces a redefinition of “limits”. In a recent study, subjects tended to modify their reaction times according to others’ movements, even when the observed and to-be-executed movements were unrelated. The influence of others over our own behaviors can potentially be utilized to exceed our behavioral limits. The two approaches presented in this chapter suggest that external influences should not be avoided but instead studied and used, and that our expected limits can be exceeded.


Transcranial Magnetic Stimulation Biological Motion Mirror Neuron System Anodal tDCS Transcranial Direct Current Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is based on a talk at the Conference on Systems Neuroscience and Rehabilitation held in Tokorozawa City in March 2010. Some of the materials used are based on other materials [16, 18, 51, 77]. The writing of this chapter was supported by Japan Science and Technology Agency. The author would like to thank Dr. Satoshi Tanaka for helpful comments. Special thanks are due to Dr. Kenji Kansaku for organizing the fruitful workshop.


  1. 1.
    Priori A, Berardelli A, Rona S, Accornero N, Manfredi M (1998) Polarization of the human motor cortex through the scalp. Neuroreport 9:2257–2260PubMedCrossRefGoogle Scholar
  2. 2.
    Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRefGoogle Scholar
  3. 3.
    Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol 114:589–595PubMedCrossRefGoogle Scholar
  4. 4.
    Wassermann EM, Grafman J (2005) Recharging cognition with DC brain polarization. Trends Cogn Sci 9:503–505PubMedCrossRefGoogle Scholar
  5. 5.
    Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68:459–463PubMedCrossRefGoogle Scholar
  6. 6.
    Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in ­neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3:383–393PubMedCrossRefGoogle Scholar
  7. 7.
    Sparing R, Mottaghy FM (2008) Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS) – from insights into human memory to therapy of its dysfunction. Methods 44:329–337PubMedCrossRefGoogle Scholar
  8. 8.
    Zago S, Ferrucci R, Fregni F, Priori A (2008) Bartholow, Sciamanna, Alberti: pioneers in the electrical stimulation of the exposed human cerebral cortex. Neuroscientist 14:521–528PubMedCrossRefGoogle Scholar
  9. 9.
    Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901PubMedCrossRefGoogle Scholar
  10. 10.
    Furubayashi T, Terao Y, Arai N, Okabe S, Mochizuki H, Hanajima R, Hamada M, Yugeta A, Inomata-Terada S, Ugawa Y (2008) Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res 185:279–286PubMedCrossRefGoogle Scholar
  11. 11.
    Bindman LJ, Lippold OC, Redfearn JW (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196:584–585PubMedCrossRefGoogle Scholar
  12. 12.
    Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382PubMedGoogle Scholar
  13. 13.
    Creutzfeldt OD, Fromm GH, Kapp H (1962) Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol 5:436–452PubMedCrossRefGoogle Scholar
  14. 14.
    Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117:845–850PubMedCrossRefGoogle Scholar
  15. 15.
    Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712PubMedCrossRefGoogle Scholar
  16. 16.
    Tanaka S, Watanabe K (2009) Transcranial direct current stimulation – a new tool for human cognitive neuroscience. Brain Nerve 61:53–64PubMedGoogle Scholar
  17. 17.
    Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A (2005) Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 16:1551–1555PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenkranz K, Nitsche MA, Tergau F, Paulus W (2000) Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett 296:61–63PubMedCrossRefGoogle Scholar
  20. 20.
    Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123PubMedGoogle Scholar
  21. 21.
    Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F (2003) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15:619–626PubMedCrossRefGoogle Scholar
  22. 22.
    Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W (2004) Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 19:2888–2892PubMedCrossRefGoogle Scholar
  23. 23.
    Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S (2004) Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci 20:313–316PubMedCrossRefGoogle Scholar
  24. 24.
    Ragert P, Vandermeeren Y, Camus M, Cohen LG (2008) Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol 119:805–811PubMedCrossRefGoogle Scholar
  25. 25.
    Dieckhöfer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbelé R (2006) Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol 117:2221–2227PubMedCrossRefGoogle Scholar
  26. 26.
    Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC (2004) Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 115:456–460PubMedCrossRefGoogle Scholar
  27. 27.
    Antal A, Nitsche MA, Paulus W (2001) External modulation of visual perception in humans. Neuroreport 12:3553–3555PubMedCrossRefGoogle Scholar
  28. 28.
    Antal A, Kincses TZ, Nitsche MA, Paulus W (2003) Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 150:375–378PubMedGoogle Scholar
  29. 29.
    Antal A, Kincses TZ, Nitsche MA, Paulus W (2003) Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41:1802–1807PubMedCrossRefGoogle Scholar
  30. 30.
    Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45:702–707PubMedCrossRefGoogle Scholar
  31. 31.
    Antal A, Varga ET, Nitsche MA, Chadaide Z, Paulus W, Kovács G, Vidnyánszky Z (2004) Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. Neuroreport 15:2491–2494PubMedCrossRefGoogle Scholar
  32. 32.
    Schweid L, Rushmore RJ, Valero-Cabre A (2008) Cathodal transcranial direct current stimulation on posterior parietal cortex disrupts visuo-spatial processing in the contralateral visual field. Exp Brain Res 186:409–417PubMedCrossRefGoogle Scholar
  33. 33.
    Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30PubMedCrossRefGoogle Scholar
  34. 34.
    Ohn SH, Park CI, Yoo WK, Ko MH, Choi KP, Kim GM, Lee YT, Kim YH (2008) Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport 19:43–47PubMedCrossRefGoogle Scholar
  35. 35.
    Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249:31–38PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697PubMedCrossRefGoogle Scholar
  37. 37.
    Marshall L, Molle M, Siebner HR, Born J (2005) Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neurosci 6:23PubMedCrossRefGoogle Scholar
  38. 38.
    Maquet P (2001) The role of sleep in learning and memory. Science 294:1048–1052PubMedCrossRefGoogle Scholar
  39. 39.
    Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3:1335–1339PubMedCrossRefGoogle Scholar
  40. 40.
    Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36:571–582PubMedCrossRefGoogle Scholar
  41. 41.
    Marshall L, Molle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24:9985–9992PubMedCrossRefGoogle Scholar
  42. 42.
    Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613PubMedCrossRefGoogle Scholar
  43. 43.
    Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR (2008) Enhancing language performance with non-invasive brain stimulation – a transcranial direct current stimulation study in healthy humans. Neuropsychologia 46:261–268PubMedCrossRefGoogle Scholar
  44. 44.
    Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Théoret H, Boggio PS, Fregni F (2007) Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 27:6212–6218PubMedCrossRefGoogle Scholar
  45. 45.
    Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27:12500–12505PubMedCrossRefGoogle Scholar
  46. 46.
    Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42:113–117PubMedCrossRefGoogle Scholar
  47. 47.
    Hummel F, Cohen LG (2005) Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair 19:14–19PubMedCrossRefGoogle Scholar
  48. 48.
    Hummel FC, Voller B, Celnik P, Floel A, Giraux P, Gerloff C, Cohen LG (2006) Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 7:73PubMedCrossRefGoogle Scholar
  49. 49.
    Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499PubMedCrossRefGoogle Scholar
  50. 50.
    Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F (2007) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 25:123–129PubMedGoogle Scholar
  51. 51.
    Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda M, Sadato N, Hanakawa T, Watanabe K (2011) Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair. doi:10.1177/1545968311402091, March 24 [E-pub ahead of print]Google Scholar
  52. 52.
    Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MT, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21:1693–1702PubMedCrossRefGoogle Scholar
  53. 53.
    Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79:451–453PubMedCrossRefGoogle Scholar
  54. 54.
    Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Basaglia A, Fregni F (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend 92:55–60PubMedCrossRefGoogle Scholar
  55. 55.
    Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS (2008) Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry 69:32–40PubMedCrossRefGoogle Scholar
  56. 56.
    Fregni F, Orsati F, Pedrosa W, Fecteau S, Tome FA, Nitsche MA, Mecca T, Macedo EC, Pascual-Leone A, Boggio PS (2008) Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite 51:34–41PubMedCrossRefGoogle Scholar
  57. 57.
    Chartrand TL, Bargh JA (1999) The chameleon effect: the perception-behavior link and social interaction. J Pers Soc Psychol 76:893–910PubMedCrossRefGoogle Scholar
  58. 58.
    James W (1890) Principle of psychology. Holt, New YorkCrossRefGoogle Scholar
  59. 59.
    Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202CrossRefGoogle Scholar
  60. 60.
    Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154CrossRefGoogle Scholar
  61. 61.
    di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180PubMedCrossRefGoogle Scholar
  62. 62.
    Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141CrossRefGoogle Scholar
  63. 63.
    Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRefGoogle Scholar
  64. 64.
    Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:167–192CrossRefGoogle Scholar
  65. 65.
    Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16:69–74PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson M, Knoblich G (2005) The case for motor involvement in perceiving conspecifics. Psychol Bull 131:460–473PubMedCrossRefGoogle Scholar
  67. 67.
    Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMedGoogle Scholar
  68. 68.
    Gangitano M, Mottaghy FM, Pascal-Leone A (2001) Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12:1489–1492PubMedCrossRefGoogle Scholar
  69. 69.
    Brass M, Bekkering H, Prinz W (2001) Movement observation affects movement execution in a simple response task. Acta Psychol 106:3–22CrossRefGoogle Scholar
  70. 70.
    Craighero L, Bello A, Fadiga L, Rizzolatti G (2002) Hand action preparation influences the responses to hand pictures. Neuropsychologia 40:492–502PubMedCrossRefGoogle Scholar
  71. 71.
    Stürmer B, Aschersleben G, Prinz W (2000) Correspondence effects with manual gestures and postures: a study of imitation. J Exp Psychol Hum Percept Perform 26:1746–1759PubMedCrossRefGoogle Scholar
  72. 72.
    Heyes C, Bird G, Johnson H, Haggard P (2005) Experience modulates automatic imitation. Cogn Brain Res 22:233–240CrossRefGoogle Scholar
  73. 73.
    Blackmore SJ, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567Google Scholar
  74. 74.
    Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602PubMedCrossRefGoogle Scholar
  75. 75.
    Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10:70–76PubMedCrossRefGoogle Scholar
  76. 76.
    Knoblich G, Sebanz N (2006) The social nature of perception and action. Curr Dir Psychol Sci 15:99–104CrossRefGoogle Scholar
  77. 77.
    Watanabe K (2008) Behavioral speed contagion: automatic modulation of movement timing by observation of body movements. Cognition 106:1514–1524PubMedCrossRefGoogle Scholar
  78. 78.
    Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211CrossRefGoogle Scholar
  79. 79.
    Thornton IM, Pinto J, Shiffrar M (1998) The visual perception of human locomotion. Cogn Neuropsychol 15:535–552PubMedCrossRefGoogle Scholar
  80. 80.
    Verfaillie K (2000) Perceiving human locomotion: priming effects in direction discrimination. Brain Cogn 44:192–213PubMedCrossRefGoogle Scholar
  81. 81.
    Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4:179–192PubMedCrossRefGoogle Scholar
  82. 82.
    Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720PubMedCrossRefGoogle Scholar
  83. 83.
    Ikeda H, Blake R, Watanabe K (2005) Eccentric perception of biological motion in unscalably poor. Vision Res 45:1935–1943PubMedCrossRefGoogle Scholar
  84. 84.
    Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15:213–218PubMedCrossRefGoogle Scholar
  85. 85.
    Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedGoogle Scholar
  86. 86.
    Bargh JA, Chen M, Burrows L (1996) Automaticity of social behavior: direct effects of trait construct and stereotype activation on action. J Pers Soc Psychol 71:230–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyThe University of TokyoMeguro-kuJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations