Mining the Himalayan Uplands Plant Database for a Conservation Baseline Using the Public GMBA Webportal*

  • Dirk Nemitz
  • Falk Huettmann
  • Eva M. Spehn
  • W. Bernhard Dickoré


This chapter shows how a synthesis of heterogeneous biological field observation data, robust taxonomic methods, and data mining leads to up-to-date scientific information that is important for sustainability and conservation management. The core of this type of research is a database with field observations. Here we use the Himalayan Uplands Plant Database (HUP), which consists of extensive collections of botanic survey information collected by the senior author in the Himalayas and in renowned public herbaria over more than 25 years. The HUP database is primarily based on preserved herbarium specimens and presently holds more than 164,000 occurrence records of vascular plants. It contains the records of more than 2,000 collectors and observers who had either directly or indirectly contributed, or records that were derived from herbarium label information.

Consistent taxonomic information and the sound use of taxonomy is the key to success of any exercise with large amounts of heterogeneous biological collection data. Taxonomy, especially on the scales of developing consistent cross-border registries, still comprises one of the most obvious bottlenecks to our understanding of biodiversity. In the absence of consistent backbone taxonomies, physical documentation (collecting, preserving, and curating of good and representative herbarium specimens or other vouchers), and quality control must be stressed as necessary preconditions to vegetation and ecology-related studies. Although inherent synonymy rates are obviously quite variable among different taxonomic groups, there is no logical, automated, or permanent procedure that could identify or constrain synonyms. A wide range of Floras, monographs, taxonomic treatments, original publications, and databases has been consulted in HUP to identify and verify specimens, and to develop, at least internally, consistent taxonomies. Other challenges of using such a large collection are the long time span covered and the diversity and inconsistency of spatial and altitudinal information. Thus, large parts of the data are currently not covered by current georeferencing databases such as BioGeomancer or by international taxonomic databases such as ITIS (Integrated Taxonomic Information System).

The history of modern biodiversity exploration is brief—in the Himalayas, a mere 200 years—whereas dramatic ecological change and disturbance including deforestation, land degradation, melting glaciers, and increasing severity of natural hazards occurred during the periods of collection. Historic data are thus precious not only on account of the “priority principle” in biological taxonomy. To ensure the highest level of usage of such precious data, we regard the availability of the data for similar and potentially even larger exercises as critically important. Here we show that a new culture needs to develop and mature for sharing, exploiting, and improving primary biodiversity data and for taxonomic work in progress. The example of HUP is used to give a step-by-step best practice guidance to make biological data digitally available online using existing and rapidly developing data-sharing infrastructures. The information of the database columns was transferred into the Darwin Core 2 format and uploaded to the publicly accessible Global Biodiversity Information Facility (GBIF; Through GBIF it is also available using the Mountain Biodiversity Portal (MBP; www.mountain, which allows to query, filter, and download GBIF data specific for mountain areas, with a horizontal (region) and vertical (elevation, climate) dimension and includes many options. In addition, a first-version XML-metadata information was created and uploaded to the National Biological Information Infrastructure (NBII) metadata clearinghouse (National Biological Information Infrastructure 2010; Thus, the HUP data are made accessible worldwide either by searching for metadata in the NBII clearinghouse database and through the authors, by searching for original biological data at GBIF, or by searching for mountain-specific information at the Global Mountain Biodiversity Assessment (GMBA) mountain biodiversity portal.


Global Position System Tibetan Plateau Biodiversity Data Global Biodiversity Information Facility Specimen Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our sincere thanks go to the directors, curators, and members of staff of the herbaria B, BM, E, G, GAT, GOET, GZU, HAL, ISL, K, KUN, M, MSB, PRC, RAW, SZU, W, WU, and Z, for their hospitality and kind support, and to the following persons who provided identifications, data, and other substantial input to the HUP database: R. Akhter, I. Al-Shehbaz, D. Albach, B. Burrows, D.F. Chamberlain, R. Cranfill, E. Eberhardt, A. Farjon, C. Fraser-Jenkins, H. Freitag, N. Friesen, R.J. Gornall, J.P. Gruber, H. Hartmann, I.C. Hedge, L. Klimeš, M. Kriechbaum, K. Lewejohann, M. Lidén, J.Q. Liu, L. Liu, G. Miehe, S. Miehe, A. Millinger, D.F. Mowle, H.J. Noltie, M. Nüsser, N. Pearce, M. Pimenov, D. Podlech, K. Reiter, A.J. Richards, H. Schneider, H. Scholz, A. Skvortsov, A.R. Smith, J. Soják, L. Springate, T. Peer, G. Wagenitz, U. Wündisch, and T. Yamazaki. F.H. wishes to thank the kind team of authors, GBIF, NBII, ICIMOD, and GMBA (specifically Eva and Christian), for making this work happen. Thanks to all.


  1. Ali S, Nasir Y, Qaiser M (eds) (1970–) Flora of (west) Pakistan, vol 1. Department of Botany, University of Karachi, and Missouri Botanical Press, Karachi and St. LouisGoogle Scholar
  2. Arzberger P, Schroeder P, Beaulieu A, Bowker G, Casey K, Laaksonen L, Moorman D, Uhlir P, Wouters P (2004) Promoting access to public research data for scientific, economic, and social development. Data Sci J 3:135–152CrossRefGoogle Scholar
  3. Bebber D, Carine M, Wood J, Wortley A, Harris D, Prance G, Davidse G, Paige J, Pennington T, Robson N, Scotland R (2010) Herbaria are a major frontier for species discovery. Proc Natl Acad Sci USA 107(51):22169–22171PubMedCrossRefGoogle Scholar
  4. Biodiversity Information Standards (2009) Darwin Core. Biodiversity Information Standards (TDWG). Accessed 14 July 2010
  5. Biodiversity of the Hengduan Mountains Project (2010) Biodiversity of the Hengduan Mountains and adjacent areas of south-central China. Accessed 14 July 2010
  6. Blöch C, Dickoré W, Samuel R, Stuessy T (2010) Molecular phylogeny of the Edelweiss (Leontopodium, Asteraceae – Gnaphalieae). Edinb J Bot 67(2):235–264CrossRefGoogle Scholar
  7. Böhm R, Auer I, Brunetti M, Mauger M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  8. Brach A, Song H (2006) eFloras: new directions for online floras exemplified by the flora of China project. Taxon 55(1):188–192CrossRefGoogle Scholar
  9. Brummitt R (1997) Taxonomy versus cladonomy, a fundamental controversy in biological systematics. Taxon 46(4):723–734CrossRefGoogle Scholar
  10. Brummitt R (2006) Am I a bony fish? Letter to the editor. Taxon 55(2):268–269CrossRefGoogle Scholar
  11. Canhos V, Souza S, Giovanni R, Canhos D (2004) Global biodiversity informatics: setting the scene for a “new world” of ecological modeling. Biodivers Inform 1:1–13Google Scholar
  12. Carvalho MD, Bockmann F, Amorim D, Brandão C, Vivo MD, Figueiredo JD, Britski H, Pinna MD, Menezes N, Marques F, Papavero N, Cancello E, Crisci J, McEachran J, Schelly R, Lundberg J, Gill A, Britz R, Wheeler Q, Stiassny M, Parenti L, Page L, Wheeler W, Faivovich J, Vari R, Grande L, Humphries C, DeSalle R, Ebach M, Nelson G (2007) Taxonomic impediment or impediment to taxonomy? a commentary on systematics and the cybertaxonomic-automation paradigm. Evol Biol 34:140–143CrossRefGoogle Scholar
  13. Chaudhri M, Qureshi R (1991) Pakistan’s endangered flora. II: a checklist of rare and seriously threatened taxa of Pakistan. Pakistan Syst 5(1–2):1–84Google Scholar
  14. Clayton W, Harman K, Williamson H (2006 onwards) GrassBase - The Online World Grass Flora. Accessed 20 December 2010
  15. Costello M (2009) Motivating online publication of data. BioScience 59:418–427CrossRefGoogle Scholar
  16. Craig E, Huettmann F (2009) Using “blackbox” algorithms such as TreeNET and Random Forests for data-mining and for finding meaningful patterns, relationships and outliers in complex ecological data: an overview, an example using Golden Eagle satellite data and an outlook for a promising future. In: Wang H-F (ed) Intelligent data analysis: developing new methodologies through pattern discovery and recovery. IGI Global, Hershey, pp 65–84Google Scholar
  17. Cushman S, Huettmann F (eds) (2010) Spatial complexity, informatics, and wildlife conservation. Springer, TokyoGoogle Scholar
  18. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. John Murray, LondonGoogle Scholar
  19. Dickoré W (1991) Zonation of flora and vegetation of the Northern declivity of the Karakoram/Kunlun Mountains (SW Xinjiang China). Geo Journal 25(2/3):265–284Google Scholar
  20. Dickoré W (1995) Systematische Revision und chronologische Analyse der Monocotyledoneae des Karakorum (Zentralasien, West-Tibet). Flora Karakorumensis I. Angiospermae, Monocotyledoneae. Stapfia 39. Botanische Arbeitsgemeinschaft am OÖ Landesmuseum Linz, LinzGoogle Scholar
  21. Dickoré W (2001a) Flora und Vegetation der Umgebung von Chilas. In: BandiniKönig D, Hinüber Ov (eds) Materialien zur Archäologie der Nordgebiete Pakistans 4, Die Felsbildstationen Shing Nala und Gichi Nala. Zabern, Heidelberg, pp 122–127Google Scholar
  22. Dickoré W (2001b) Observations on some Saussurea (Compositae-Cardueae) of W. Kunlun, Karakorum and W. Himalaya. Edinb J Bot 58:15–29CrossRefGoogle Scholar
  23. Dickoré W, Hilger H (in press) Decalepidanthus Riedl 1963 (Boraginaceae) includes and antedates Pseudomertensia Riedl in Rechinger 1967; a synopsis of the genus. PhytotaxaGoogle Scholar
  24. Dickoré W, Kasperek G (2010) Species of Cotoneaster (Rosaceae, Maloideae) indigenous to, naturalising or commonly cultivated in Central Europe. Willdenowia 40:13–45CrossRefGoogle Scholar
  25. Dickoré W, Kriechbaum M (2006) Oxytropis iridum (Leguminosae), a new species from SE Tibet (Xizang, China), including phytogeographical remarks. Willdenowia 36:857–865CrossRefGoogle Scholar
  26. Dickoré W, Miehe G (2002) Cold spots in the highest mountains of the world – diversity patterns and gradients in the flora of the Karakorum. In: Körner C, Spehn E (eds) Mountain biodiversity: a global assessment. Parthenon, London, pp 129–147Google Scholar
  27. Dickoré W, Nüsser M (2000) Flora of Nanga Parbat (NW Himalaya, Pakistan) – an annotated inventory of vascular plants with remarks on vegetation dynamics. Englera 19. Botanical Garden, BerlinGoogle Scholar
  28. Dobremez J, Shakya P, Camaret S, Vigny F, Eynard-Machet R (1967–2009) Flora Himalaya database. Laboratoire d’Ecologie Alpine. Accessed 20 Dec 2010
  29. Drew AC, Wiersma YF, Huettmann F (2010) Predictive modeling in landscape ecology. Springer, New YorkGoogle Scholar
  30. Eberhardt E, Dickoré W, Miehe G (2006) Vegetation of Hunza Valley: diversity, altitudinal distribution and human impact. In: Kreutzmann H (ed) Karakoram in transition. Oxford University Press, Karachi, pp 109–122Google Scholar
  31. eFloras (2010) Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA. Accessed 15 Dec 2010
  32. Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann L, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson A, Phillips S, Richardson K, Scachetti-Pereira R, Schapire R, Soberón J, Williams S, Wisz M, Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  33. Encyclopedia of Life (EoL). Accessed 2 Feb 2011
  34. Federal Geographic Data Committee (2010) Geospatial metadata. Federal Geographic Data Committee (FGDC. Accessed 14 July 2010
  35. Fraser-Jenkins C (1997) Himalayan ferns: a guide to Polystichum. International Book Distributors, Dehra DunGoogle Scholar
  36. Funk V (1993) Uses and misuses of Floras. Taxon 42(4):761–772CrossRefGoogle Scholar
  37. Global Biodiversity Information Facility (GBIF). Accessed 2 Feb 2011
  38. Global Mountain Biodiversity Assessment (2010) Mountain Biodiversity Portal. Global Mountain Biodiversity Assessment (GMBA). Accessed 14 July 2010
  39. Global Taxonomy Initiative (GTI) (2010). Accessed 14 Dec 2010
  40. Govaerts R (2001) How many species of seed plants are there? Taxon 50(4):1085–1090CrossRefGoogle Scholar
  41. Govaerts R (2003) How many species of seed plants are there? A response. Taxon 52(3):583–584CrossRefGoogle Scholar
  42. Grierson A (1964) A revision of the asters of the Himalayan area. Notes R Bot Gard Edinb 26:67–163Google Scholar
  43. Grierson AJC, Long DG (eds) (1983–2002) Flora of Bhutan including a record of plants from Sikkim, vol 1. Royal Botanic Garden, EdinburghGoogle Scholar
  44. Grubov VI (ed) (1963–2007) Plants of central Asia (Plantae Asia Centralis, English translation), vol 1–14a. Science Publishers, EnfieldGoogle Scholar
  45. Grubov V (1991) Plants of central Asia. Science Publishers, EnfieldGoogle Scholar
  46. Guralnick R, Hill A (2009) Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes. Bioinformatics (Oxf) 25:421–428CrossRefGoogle Scholar
  47. Guralnick R, Wieczorek J, Beaman R, Hijmans R et al (2006) BioGeomancer: automated georeferencing to map the world’s biodiversity data. PLoS Biol 4:1908–1909Google Scholar
  48. Hajra P, Sharma B, Sanjappa M, Sastra A (eds) (1996–) Flora of India, vol 1. Botanical Survey of India, CalcuttaGoogle Scholar
  49. Hara H, Williams L, Stearn W, Chater A (eds) (1978–1982) An enumeration of the flowering plants of Nepal, vols 1–3. Natural History Museum, LondonGoogle Scholar
  50. Hoagland K (1995) The taxonomic impediment and the Convention on Biodiversity. White paper of the Convention on Biodiversity, Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA)Google Scholar
  51. Hooker J (1875–1897) Flora of British India. L. Reeve, LondonGoogle Scholar
  52. Huettmann F (2010) The global need for, and appreciation of, high-quality metadata in biodiversity database work. In: Spehn EM, Koerner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Boca RatonGoogle Scholar
  53. Huss H (1978) Über Flora und Vegetation des Wakhan und Großen Pamir. In: Grancy S, Kostka R (eds) Großer Pamir, pp 168–192Google Scholar
  54. Integrated Taxonomic Information System (2010) Integrated Taxonomic Information System (ITIS). Accessed 14 July 2010
  55. International Code of Botanical Nomenclature (ICBN) (2006) Vienna Code. Accessed 2 Feb 2011
  56. IUCN (2007) Guidelines for applying the precautionary principle to biodiversity conservation and natural resource management. IUCN Council, GlandGoogle Scholar
  57. Jansen F, Dengler J (2010) Plant names in vegetation databases: a neglected source of bias. J Veg Sci 21(6):1179–1186CrossRefGoogle Scholar
  58. Jordon-Thaden I, Hase I, Al-Shehbaz I, Koch M (2010) Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Mol Phylogenet Evol 55(2):524–540PubMedCrossRefGoogle Scholar
  59. Klimeš L, Dickoré W (2005) A contribution to the vascular flora of Lower Ladakh (Jammu & Kashmir, India). Willdenowia 35:125–153CrossRefGoogle Scholar
  60. Körner C, Paulsen J (2010) Exploring and explaining mountain biodiversity: the role and power of geophysical information systems. In: Spehn EM, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, pp 1–10Google Scholar
  61. Körner C, Donoghue M, Fabbro T, Häuser C, Nogués-Bravo D, Arroyo M, Soberon J, Speers L, Spehn E, Sun H, Tribsch A, Tykarski P, Zbinden N (2007) Creative use of mountain biodiversity databases: the Kazbegi Research Agenda of GMBA-DIVERSITAS. Mt Res Dev 27:276–281CrossRefGoogle Scholar
  62. Körner C, Paulsen J, Spehn E (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp BotGoogle Scholar
  63. Mayo S, Allkin R, Baker W, Blagoderov V, Brake I, Clark GR, Godfray C, Haigh A, Hand R, Harman K, Jackson M, Kilian N, Kirkup D, Kitching I, Knapp S, Lewis G, Malcolm-Tompkins P, Ev R-S, Roberts D, Scoble M, Simpson D, Smith C, Smith V, Villalba S, Walley L, Wilkin P (2008) Alpha e-taxonomy: responses from the systematics community to the biodiversity crisis. Kew Bull 63:1–16CrossRefGoogle Scholar
  64. Miehe G, Miehe S, Dickoré W (2002) Alpine deserts in high Asia. In: Xiaoping Y (ed) Deserts and alpine environments. Advances in geomorphology and paleoclimatology. China Ocean Press, Beijing, pp 59–79Google Scholar
  65. National Biological Information Infrastructure (2010) NBII Metadata Clearinghouse. National Biological Information Infrastructure (NBII). Accessed 14 July 2010
  66. Nixon K, Carpenter J, Stevenson D (2003) The PhyloCode is fatally flawed, and the Linnaean system can easily be fixed. Bot Rev 69(1):111–120CrossRefGoogle Scholar
  67. Nüsser M, Dickoré W (2002) A tangle in the triangle: vegetation map of the Eastern Hindukush (Chitral, Northern Pakistan). Erdkunde 56(1):37–59CrossRefGoogle Scholar
  68. Omer S, Qaiser M, Ali S (2001) Flora of Pakistan. In: Afzal M, Mufti SA (eds) Natural history research in Pakistan. PASTIC, Islamabad, pp 1–25Google Scholar
  69. Ovczinnikov P (1957–1991) Flora Tadhzikskoj SSR (flora of Tajikistan), vols 1–10. Nauka, Leningrad/St. PetersburgGoogle Scholar
  70. Pampanini R (1930) La Flora del Caracorùm. In: Spedizione Italiana De Filippi nell’Himàlaya, Caracorùm e Turchestàn Cinese (1913–1914). BolognaGoogle Scholar
  71. Pimenov M, Kljuykov E, Dickoré W, Miehe G (2000) Four Himalayan Umbelliferae new to the flora of China with critical notes on Tordyliopsis DC. and Keraymonia Farille. Willdenowia 30:361–367Google Scholar
  72. Press J, Shrestha K, Sutton D (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum and Tribhuvan University, London and KathmanduGoogle Scholar
  73. Qureshi R, Chaudhri M (1987) The endangered flora of Pakistan. A preliminary report. Pakistan Syst 3(1):32–37Google Scholar
  74. Rechinger K (ed) (1963–2010) Flora Iranica, vols 1–178, Akademische Druck-u, Verlagsanstalt, GrazGoogle Scholar
  75. Schlagintweit-Sakünlünski H (1876) Bericht über die Anlage des Herbariums während der Reisen nebst Erläuterungen der topographischen Angaben. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse 12(3):133–196Google Scholar
  76. Schmid E (1932) Pteridophyta, Gymnospermae, Angiospermae (Botanische Ergebnisse der Deutschen Zentralasien-Expedition 1927–28). Repertorium Novarum Specierum Regni Vegetabilis 31(1):27–75CrossRefGoogle Scholar
  77. Scotland R, Worthley A (2003) How many species of seed plants are there? Taxon 52(1):101–104CrossRefGoogle Scholar
  78. Scotland R, Hughes C, Bailey D, Wortley A (2003) The big machine and the much-maligned taxonomist. Syst Biodivers 1(2):139–143CrossRefGoogle Scholar
  79. Staudt G, Dickoré W (2001) Notes on Asiatic Fragaria species: Fragaria pentaphylla Losinsk. and Fragaria tibetica spec. nov. Bot Jahrb Syst 123:341–354Google Scholar
  80. Stewart R (1972) An annotated catalogue of the vascular plants of West Pakistan and Kashmir. In: Nasir E, Ali SI (eds) Flora of West Pakistan. Fakhri Press, Karachi, p 1028Google Scholar
  81. The Plant List (2010) A working list of all plant species. Accessed 2 Feb 2011
  82. Thomson T (1852) Western Himalaya and Tibet; a narrative of a journey through the mountains of Northern India during the years 1847–48. Reene and Company, LondonGoogle Scholar
  83. Thorne R (2002) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon 51(3):511–512CrossRefGoogle Scholar
  84. Ungricht S (2004) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon 53(2):481–484CrossRefGoogle Scholar
  85. Viviroli D, Dürr H, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43:W07447Google Scholar
  86. World Checklists of Selected Plant Families (WCSP) (2010) The Board of Trustees of the Royal Botanic Gardens. Accessed 20 Dec 2010
  87. Wu Z (ed) (1980–1986) Flora Xizangica, vols 1–5. Science Press, BeijingGoogle Scholar
  88. Wu Z et al (eds) (1959–2004) Flora Reipublicae Popularis Sinicae, vols 1–80. BeijingGoogle Scholar
  89. Wu Z, Raven P, Hong D (eds) (1994–) Flora of China, vols 4–18, 22–25. Science Press and Missouri Botanical Garden Press, Beijing and St. LouisGoogle Scholar
  90. Wündisch U, Dickoré W, Miehe G (2003) Flora and vegetation of the Oytagh Valleys: phytogeography of an isolated coniferous mountain forest in arid central Asia (Western Kunlun Shan, China). Candollea 58(1):215–269Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Dirk Nemitz
    • 1
  • Falk Huettmann
    • 2
  • Eva M. Spehn
    • 3
  • W. Bernhard Dickoré
    • 4
  1. 1.Department of Applied Zoology/Hydrobiology, Faculty for BiologyUniversity Duisburg-EssenEssenGermany
  2. 2.EWHALE lab- Biology and Wildlife Department, Institute of Arctic BiologyUniversity of Alaska-FairbanksFairbanksUSA
  3. 3.Institute of Botany, Global Mountain Biodiversity Assessment (GMBA) of DIVERSITASUniversity of BaselBaselSwitzerland
  4. 4.Botanische Staatssammlung MuenchenMunichGermany

Personalised recommendations