Advertisement

Markov–Cellular Automata in Geospatial Analysis

  • Courage Kamusoko
Chapter

Abstract

Spatial simulation models are indispensable for modelling land use/cover changes (Wu and Webster 1998; Messina and Walsh 2001; Soares-Filho et al. 2002), deforestation and land degradation (Lambin 1994; Lambin 1997; Etter et al. 2006; Moreno et al. 2007), urban growth (Clarke et al. 1997; Couclelis 1989; Cheng and Masser 2004; Gar-On Yeh and Li 2009), climate change (Dale 1997) and hydrology (Matheussen et al. 2000). For land use/cover change studies, spatial simulation models are critical for understanding the driving forces of change, as well as to produce “what if” scenarios that can be used to gain insights into future land use/cover changes (Pijanowski et al. 2002; Eastman et al. 2005; Torrens 2006). Recently, the knowledge domain of spatial simulation modelling has advanced owing to the rapid developments in computer technology, coupled with the decrease in the cost of computer hardware. In addition, developments in geospatial, natural and social sciences concerning bottom-up, dynamic and flexible self-organising modelling systems, complemented by theories that emphasize the way in which decisions made locally give rise to global patterns, have enriched spatial simulation models (Tobler 1979; Wolfram 1984; Couclelis 1985; Engelen 1988; Wu and Webster 1998; Batty 1998). To date, numerous spatial simulation models have been developed and applied, particularly for land use/cover modelling (Clarke et al. 1997; Kaimowitz and Angelsen 1998; Messina and Walsh 2001; Soares-Filho et al. 2002; Walsh et al. 2006).

Keywords

Markov Chain Cellular Automaton Cellular Automaton Markov Chain Model Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agterberg FP, Cheng Q (2002) Conditional independence test for weights-of-evidence modeling. Nat Resour Res 11(4):249–255CrossRefGoogle Scholar
  2. Almeida CM, Batty M, Monteiro AMV, Camara G, Soares-Filho BS, Cerqueira GC et al (2003) Stochastic cellular automata modeling of urban land use dyanimics: empirical development and estimation. Comput Environ Urban Syst 27:481–509CrossRefGoogle Scholar
  3. Almeida CM, Monteiro AMV, Camara G, Soares-Filho BS, Cerqueira GC, Pennachin CL, Batty M (2005) GIS and remote sensing as tools for the simulation of urban land-use change. Int J Rem Sens 26(4):759–774CrossRefGoogle Scholar
  4. Angelsen A (2008) REDD models and baselines. Int For Rev 10(3):465–475Google Scholar
  5. Angelsen A, Brockhaus M, Kanninen M, Sills E, Sunderlin WD, Wertz-Kanounnikoff S (eds) (2009) Realising REDD+: national strategy and policy options. CIFOR, BogorGoogle Scholar
  6. Aspinall R (1994) Use of GIS for interpreting land-use policy and modeling effects of land use change. In: Haines-Young R, Green DR, Cousins S (eds) Landscape ecology and geographic information systems. Taylor and Francis, London, pp 223–236Google Scholar
  7. Batty M (1998) Urban evolution on the desktop: simulation with the use of extended cellular automata. Environ Plann Plann Des 30:1943–1967CrossRefGoogle Scholar
  8. Bell EJ (1975) Stochastic analysis of urban development. Environ Plann 7:35–39CrossRefGoogle Scholar
  9. Bell EJ, Hinojosa RC (1977) Markov analysis of land use change: continuous time and stationary processes. Soc Econ Plann Sci 11:13–17CrossRefGoogle Scholar
  10. Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion. Resource use changes and policy analysis. Agr Econ 25:245–260CrossRefGoogle Scholar
  11. Boerner REJ, DeMers MN, Simpson JW, Artigas FJ, Silva A, Berns LA (1996) Markov models of inertia and dynamic on two contiguous Ohio landscapes. Geogr Anal 28:56–66CrossRefGoogle Scholar
  12. Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, New YorkGoogle Scholar
  13. Bonham-Carter GF, Agterberg FP, Wright DF (1988) Integration of geological data sets for gold exploration in Nova Scotia. American Society for Photogrammetry and Remote Sensing, MarylandGoogle Scholar
  14. Briassoulis H (2000) Analysis of land use change: theoretical and modeling approaches. Regional Research Institute, West Virginia University, Morgantown. http://www.rri.wvu.edu/WebBook/Briassoulis/contents.html. Accessed 14 May 2005
  15. Brown S, Hall M, Andrasko K, Ruiz F, Marzoli W, Guerrero G, Masera O, Dushku A, De Jong B, Cornell J (2007) Baselines for land-use change in the tropics: application to avoided deforestation projects. Mitigation and Adaptation Strategies for Global Change 12:1001–1026CrossRefGoogle Scholar
  16. Carver S (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inform Syst 5:321–339CrossRefGoogle Scholar
  17. Chen Q, Mynett AE (2003) Effects of cell size and configuration in cellular automata based prey-predator modeling. Simul Model Pract Theory 11(7–8):609–625CrossRefGoogle Scholar
  18. Cheng J, Masser I (2004) Understanding spatial and temporal processes of urban growth: cellular automata modelling. Environ Plann Plann Des 31:167–194CrossRefGoogle Scholar
  19. Clarke KC, Hoppen S, Gaydos L (1997) A Self-modifying cellular automaton model of historical urbanization in the San Fransisco Bay Area. Environ Plann 24:247–261CrossRefGoogle Scholar
  20. Couclelis H (1985) Cellular worlds: a framework for micro–macro dynamics. Environ Plann 17:585–596CrossRefGoogle Scholar
  21. Couclelis H (1989) Macrostructure and microbehavior in a metropolitan area. Environ Plann 16:141–154CrossRefGoogle Scholar
  22. Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 17(3):753–769CrossRefGoogle Scholar
  23. UFMG (Universidade Federal de Minas Gerais) (2009) Dinamica EGO. http://www.csr.ufmg.br/dinamica/. Accessed 2 Apr 2009
  24. Drewett JR (1969) A stochastic model of the land conversion process. Reg Stud 3:269–280CrossRefGoogle Scholar
  25. Eastman JR (2009) Idrisi Taiga, guide to GIS and image processing. Clark University Edition, p 342Google Scholar
  26. Eastman JR, Jin W, Kyem PAK, Toledano J (1995) Raster procedures for multi-criteria/multi-objective decisions. Photogramm Eng Rem Sens 61(5):539–547Google Scholar
  27. Eastman JR, Solorzano LA, van Fossen ME (2005) Transition potential modeling for land-cover change. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI Press, California, pp 357–385Google Scholar
  28. Engelen G (1988) The theory of self-organization and modeling complex urban systems. Eur J Oper Res 37:42–57CrossRefGoogle Scholar
  29. Engelen G, White R, Uljee I, Drazan P (1995) Using cellular automata for integrated modeling of socio-environmental systems. Environ Monit Assess 34:203–214CrossRefGoogle Scholar
  30. Etter A, McAlphine C, Wilson K, Phinn S, Possingham H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386CrossRefGoogle Scholar
  31. Gar-On Yeh A, Li X (2009) Cellular automata, and GIS for urban planning. In: Madden M (ed) Manual of geographic information systems. ASPRS, Sacramento, pp 591–619Google Scholar
  32. Geoghegan J, Pritchard L Jr, Ogneva-Himmelberger Y, Chowdhury RR, Sanderson S, Turner BL II (1998) Socializing the pixel and pixelizing the social in land-use and land-cover change. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, pp 151–169Google Scholar
  33. GOFC-GOLD (2010) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses of carbon stocks in forests, remaining forests, and forestation. GOFC-GOLD Report version COP16-1. GOFC-GOLD Project Office, Natural Resources Canada, AlbertaGoogle Scholar
  34. Heywood I, Cornelius S, Carver S (1998) An introduction to geographical information systems. Addison Wesley Longman, England, pp 138–142Google Scholar
  35. Hosseinali F, Alesheikh AA (2008) Weighting spatial information in GIS for copper mining exploration. Am J Appl Sci 5(9):1187–1198CrossRefGoogle Scholar
  36. Irwin EG, Geoghegan J (2001) Theory, data, methods: developing spatially explicit economic models of land use change. Agric Ecosyst Environ 85:7–23CrossRefGoogle Scholar
  37. Jahan S (1986) The determination of stability and similarity of Markovian land use change processes: a theoretical and empirical analysis. Soc Econ Plann Sci 20:243–251CrossRefGoogle Scholar
  38. Jankowski P (1995) Integrating geographical information systems and multiple criteria decision making methods. Int J Geogr Inf Syst 9(3):251–273CrossRefGoogle Scholar
  39. Jankowski P, Richard L (1994) Integration of GIS-based suitability analysis and multicriteria evaluation in a spatial decision support system for route selection. Environ Plann 21:399–420CrossRefGoogle Scholar
  40. Jantz CA, Goetz SJ (2005) Analysis of scale dependencies in an urban land-use change in the central Arizona–Phoenix region, USA. Landsc Ecol 16:611–626Google Scholar
  41. Kaimowitz D, Angelsen A (1998) Economic models of tropical deforestation: a review. Center for International Forestry Research, BogorGoogle Scholar
  42. Kamusoko C, Aniya M, Bongo A, Munyaradzi M (2009) Rural sustainability under threat in Zimbabwe – simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29(3):435–447CrossRefGoogle Scholar
  43. Karlin S, Taylor HM (1975) A first course in stochastic processes. Academic, New YorkGoogle Scholar
  44. Kok K, Farrow A, Veldkamp TA, Verbug PH (2001) A method and application of multi-scale validation in spatial land use models. Agr Ecosyst Environ 85(1–3):223–238CrossRefGoogle Scholar
  45. Lambin EF (1994) Modelling deforestation processes: a review. TREES Publications Series B: Research Report no.1, European Commission, EUR 15744 ENGoogle Scholar
  46. Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21:375–393CrossRefGoogle Scholar
  47. Lambin EF, Rounsevell M, Geist H (2000) Are agricultural land-use models able to predict changes in land use intensity? Agr Ecosyst Environ 82(1–3):321–331CrossRefGoogle Scholar
  48. Levine N, Block R (2011) Are Bayesian journey-to-crime estimation: an improvement in geographic profiling methodology. Prof Geogr 63(2):213–229CrossRefGoogle Scholar
  49. Li H, Reynolds JF (1997) Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publishers, Boca Raton, pp 211–230Google Scholar
  50. Liu JG, Mason PJ (2009) Essential image processing and GIS for remote sensing. Wiley-Blackwell, OxfordGoogle Scholar
  51. Maeda EE, Almeida CM, Ximenes AC, Formaggio AR, Shimabukuro YE, Pellikka P (2011) Dynamic modeling of forest conversion: Simulation of past and future scenarios of rural ­activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. Int J Appl Earth Observation Geoinformation 13:435–446CrossRefGoogle Scholar
  52. Matheussen B, Kirschbaum RL, Goodman IA, O’Dennel GM, Lettenmaier DP (2000) Effects of land cover change on stream flow in the interior Columbia river basin (USA and Canada). Hydrolog Process 14(5):867–885CrossRefGoogle Scholar
  53. Messina J, Walsh S (2001) 2.5D morphogenesis: modeling landuse and landcover dynamics in the Ecuadorian Amazon. Plant Ecol 156:75–88CrossRefGoogle Scholar
  54. Moreno N, Quintero R, Ablan F, Barros F, Davila J, Ramirez H, Tonella G, Acevedo MF (2007) Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: an integrated multi-agent and cellular automata model. Environ Model Softw 22:664–673CrossRefGoogle Scholar
  55. Moreno N, Wang F, Marceau DJ (2010) A geographic object-based approach in cellular automata modeling. Photogramm Eng Rem Sens 76(2):183–191Google Scholar
  56. Muller MR, Middleton J (1994) A Markov model of land use change dynamics in the Niagara Region, Ontario, Canada. Landsc Ecol 9:151–157Google Scholar
  57. Myint SW, Wang L (2006) Multicriteria decision approach for land use land cover change using Markov chain analysis and a cellular automata approach. Can J Remote Sens 32(6):390–404CrossRefGoogle Scholar
  58. Paegelow M, Olmedo MTC (2005) Possibilities and limits of prospective GIS land cover modelling: a compared case study: Garrotxes (France) and Alta Alpujarra Granadina (Spain). Int J Geogr Inform Sci 19(6):697–722CrossRefGoogle Scholar
  59. Parker DC, Manson SM, Janssen MA, Hoffman M, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337CrossRefGoogle Scholar
  60. Pastor J, Bonde J, Johnston C, Naiman RJ (1993) Markovian analysis of the spatially dependent dynamics of beaver ponds. In: Gardner RH (ed) Predicting spatial effects in ecological systems: lectures on mathematics in the life sciences, 23. American Mathematical Society, Providence, pp 5–27Google Scholar
  61. Petit C, Scudder T, Lambin E (2001) Quantifying processes of land-cover change by remote sensing: resettlement and rapid land-cover changes in south-eastern Zambia. Int J Rem Sens 22:3435–3456CrossRefGoogle Scholar
  62. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land Transformation Model. Comput Environ Urban Syst 26:553–575CrossRefGoogle Scholar
  63. Pontius RG Jr, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265CrossRefGoogle Scholar
  64. Pontius RG Jr, Cornell JD, Hall CAS (2001) Modelling spatial patternsof land use change with GEOMOD: application and validation for Costa Rica. Agr Ecosyst Environ 85(1–3):553–575Google Scholar
  65. Pontius RG Jr, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445–461CrossRefGoogle Scholar
  66. Rindfuss RR, Walsh SJ, Mishra V, Dolcemascalo GP (2003) Linking household and remotely sensed data: methodological and practical problems. In: Fox J, Rindfuss RR, Walsh SJ, Mishra V (eds) People and the environment: approaches for linking household and community surveys to remote sensing and GIS. Kluwer Academic, Boston, pp 1–29Google Scholar
  67. Robinson VB (1978) Information theory and sequences of land use: an application. Prof Geogr 30:174–179CrossRefGoogle Scholar
  68. Rykiel EJ Jr (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244CrossRefGoogle Scholar
  69. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281CrossRefGoogle Scholar
  70. Saaty TL, Vargas LG (2001) Models, methods, concepts and application of analytic hierarchy process. Kluwer Academic, BostonCrossRefGoogle Scholar
  71. Silverton J, Holtier S, Johnson J, Dale P (1992) Cellular automaton models of interspecific competition for space – the effect of pattern on process. J Ecol 80:527–534CrossRefGoogle Scholar
  72. Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) DINAMICA: a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235CrossRefGoogle Scholar
  73. Soares-Filho BS, Nepsta DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 23:520–523CrossRefGoogle Scholar
  74. Teixerira AMG, Soares-Filho BS, Freitas SR, Metger JP (2009) Modeling landscape dynamics in an Atlantic rainforest region: implications for conservation. For Ecol Manag 257:1219–1230CrossRefGoogle Scholar
  75. Terrestrial Carbon Group (2008) How to include terrestrial carbon in developing nations in the overall climate change solution. http://www.terrestrialcarbon.org/. Accessed 14 Jan 2011
  76. Tobler W (1979) Cellular geography. In: Gale S and Olsson G (eds) Philosophy in geography. Reidel Publishing Company, Dortrecht, pp 379–386Google Scholar
  77. Torrens PM (2000) How cellular models of urban systems work (1. Theory). CASA Working Paper Series, 28. Centre for Advanced Spatial Analysis (UCL), London. http://www.casa.ucl.ac.uk/working_papers/paper28.pdf. Accessed 17 Aug 2009
  78. Torrens PM (2006) Simulating sprawl. Ann Assoc Am Geogr 96(2):248–275CrossRefGoogle Scholar
  79. Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inform Sci 19(4):385–412CrossRefGoogle Scholar
  80. Veldkamp A, Verbug PH, Kok K, de Koning GHJ, Priess J, Bergsma AR (2001) The need for scale sensitive approaches in spatially explicit land use change modelling. Environ Model Assess 6:111–121CrossRefGoogle Scholar
  81. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61:309–324CrossRefGoogle Scholar
  82. Voogd H (1993) Multicriteria evaluation for urban and regional planning. Pion, LondonGoogle Scholar
  83. Walsh SJ, Entwilse B, Rindfuss RR, Pages PH (2006) Spatial simulation modelling land use/land cover change scenarios in northern Thailand: a cellular automata approach. J Land Use Sci 1(1):5–28CrossRefGoogle Scholar
  84. Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64:273–284CrossRefGoogle Scholar
  85. White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modeling. Environ Plann 24:235–246CrossRefGoogle Scholar
  86. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424CrossRefGoogle Scholar
  87. Wood EC, Tappan GG, Hadj A (2004) Understanding the drivers of agricultural land use change in south-central Senegal. J Arid Environ 59:565–582CrossRefGoogle Scholar
  88. Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plann 25:103–126CrossRefGoogle Scholar
  89. Wu Q, Li H, Wang R, Paulusen J, He Y, Wang M, Wang Z (2006) Monitoring and predicting land use changes in Beijing using remote sensing and GIS. Landsc Urban Plann 78(4):322–333CrossRefGoogle Scholar
  90. Zhou G, Liebhold AM (1995) Forecasting the spread of gypsy moth outbreaks using cellular transition models. Landsc Ecol 10:177–186CrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Overseas Operations DivisionAsia Air Survey Co. Ltd.TokyoJapan
  2. 2.Integrative Environmental Sciences ProgramUniversity of TsukubaTsukubaJapan

Personalised recommendations