Skip to main content

Agent-Based Simulation in Geospatial Analysis

  • Chapter
  • First Online:
Progress in Geospatial Analysis
  • 2713 Accesses

Abstract

There is a wide array of simulation methods that mimic the mechanisms of human intelligence to achieve one or more objectives. Analytical simulation approaches basically use equations that explain data, while statistical ones work primarily with probabilities. An iterative combination of any or both of the above uses feedback options to answer problems which are too complex to be solved by one equation. Most of these equation-based mathematical models identify system variables, and evaluate or integrate sets of equations relating to these variables. A variant of such equation-based models are based on linear programming (Howitt 1995; Weinberg et al. 1993), and are potentially linked to geographical information science (GIS) information (Chuvieco 1993; Cromley and Hanink 1999; Longley et al. 1994). However, in practice there are limited levels of complexity that can be built into these models (Parker et al. 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auyung SY (1998) Foundations of complex-systems theories in economics, evolutionary biology, and statistical physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Axelrod R, Cohen MD (2000) Harnessing complexity: organizational implications of a scientific frontier. Basic Book, New York

    Google Scholar 

  • Baker WL (1989) A review of models in landscape change. Landsc Ecol 2(2):111–133

    Article  Google Scholar 

  • Balmann A (1997) Farm-based modelling of a region structural change: a cellular automata approach. Eur Rev Agric Econ 24:85–108

    Article  Google Scholar 

  • Balmann A, Happe K, Kellermann K, Kleingarn A (2002) Adjustment costs of agri-environment policy switching: an agent-based analysis of the German region Hohenlohe. In: Janssen M (ed) Complexity and ecosystem management: the theory and practice of multi-agent systems. Edward Elgar, Cheltenham, pp 127–157

    Google Scholar 

  • Balzter H, Braun PW, Kohler W (1998) Cellular automata models for vegetation dynamics. Ecol Model 107(2/3):113–125

    Article  Google Scholar 

  • Bandini S, Manzoni S, Vizzari G (2009) Agent based modeling and simulation: an informatics perspective. J Artif Soc Soc Simulat 12(4):4. http://jasss.soc.surrey.ac.uk/12/4/4.html. Accessed 14 Apr 2011

    Google Scholar 

  • Becu N, Perez P, Walker B, Barreteau O, Le Page C (2003) Agent-based simulation of a small catchment water management in northern Thailand: description of the Catchscape model. Ecol Model 170:319–331

    Article  Google Scholar 

  • Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agr Econ 25:245–260

    Article  Google Scholar 

  • Berger T, Ringler C (2002) Trade-offs, efficiency gains, and technical change: modelling water management and land use within a multiple-agent framework. Q J Int Agr 41(1/2):119–144

    Google Scholar 

  • Bonabeau E (2002) Agent-based modelling: methods and techniques for simulating human systems. Proc Natl Acad Sci 99(3):7280–7287

    Article  Google Scholar 

  • Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176(3–4):313–332

    Article  Google Scholar 

  • Brown DG, Page SE, Riolo R, Rand W (2004) Agent-based and analytical modelling to evaluate the effectiveness of green belts. Environ Model Softw 19:1097–1109

    Article  Google Scholar 

  • Buchta C, Meyer D, Ster AP, Mild A, Taudes A (2003) Technological efficiency and organizational inertia: a model of the emergence of disruption. Comput Math Organ Theor 9:127–146

    Article  Google Scholar 

  • Casti JL (1995) Complexication: explaining a paradoxical world through the science of surprise, 1st edn. Harper Perennial, New York

    Google Scholar 

  • Chuvieco E (1993) Integration of linear programming and GIS for land-use modeling. Int J Geogr Inform Syst 7(1):71–83

    Article  Google Scholar 

  • Collier N (2000) RePast: an extensible framework for agent simulation. http://repast.sourceforge.net/docs/repast_intro_final.doc. Accessed 14 Jun 2011

  • Conte R, Hegselmann R, Terna P (eds) (1997) Simulating social phenomena. Springer, Berlin

    Google Scholar 

  • Couclelis H (2001) Modeling frameworks, paradigms, and approaches. In: Clarke KC, Parks BE, Crane MP (eds) Geographic information systems and environmental modeling. Longman and Co, New York, pp 33–48

    Google Scholar 

  • Cromley RG, Hanink DM (1999) Coupling land-use allocation models with raster GIS. J Geogr Syst 1:137–153

    Article  Google Scholar 

  • Dawid H, Dermietzel J (2006) How robust is the equal split norm? Responsive strategies, selection mechanisms and the need for economic interpretation of simulation parameters. Comput Econ 28:371–397

    Article  Google Scholar 

  • Deadman P, Robinson D, Moran E, Brondizo E (2004) Colonist household decision-making and land-use change in the Amazon Rainforest: an agent based simulation. Environ Plann Plann Des 31:693–709

    Article  Google Scholar 

  • Dean JS, Gumerman GJ, Epstein JM, Axtell RL, Swedlund AC, Parket MT, McCarroll S (2000) Understanding Anasazi cultural change through agent-based modelling. In: Kohler TA, Gumerman GJ (eds) Dynamics in human and primate studies: agent-based modeling of social and spatial processes. Oxford University Press, New York, pp 179–206

    Google Scholar 

  • Deffuant G, Huet S, Bousset JP, Henriot J, Amon G, Weisbuch G (2002) Agent-based simulation of organic farming conversion in Allier department. In: Janssen M (ed) Complexity and ecosystem management: the theory and practice of multi-agent systems. Edward Elgar, Cheltenham, pp 158–187

    Google Scholar 

  • Epstein JM (1999) Agent-based models and generative social science. Complexity 4(5):41–60

    Article  Google Scholar 

  • Epstein JM, Axtell R (1996) Growing artificial societies: social science from the bottom up. Brookings Institute, Washington

    Google Scholar 

  • Evans TP, Kelley H (2004) Multi-scale analysis of a household-level agent-based model of land cover change. J Environ Manag 72:57–72

    Article  Google Scholar 

  • Geoghegan J et al (1998) Socializing the pixel and pixelizing the social in land-use and land-cover change. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, pp 51–69

    Google Scholar 

  • Gilbert N, Troitzsch KG (1999) Simulation for the social scientist. Open University Press, London

    Google Scholar 

  • Gleick J (1987) Chaos: making a new science. Viking, New York

    Google Scholar 

  • Happe K (2004) Agricultural policies and farm structures. Agent-based modelling and application to EU-policy reform. Studies on the agricultural and food sector in central and eastern Europe, 30, IAMO. http://www.iamo.de/dok/sr_vol30.pdf. Accessed 23 June 2011

  • Heath BL (2010) The history, philosophy, and practice of agent-based modeling and the development of the conceptual model for a simulation diagram. Ph.D. Thesis, School of Graduate Studies, Wright State University. http://etd.ohiolink.edu/send-pdf.cgi/Heath%20Brian.pdf?wright1269176275. Accessed 8 Jun 2011

  • Hoffmann M, Kelley H, Evans T (2002) Simulating land-cover change in South-Central Indiana: an agent-based model of deforestation and afforestation. In: Janssen M (ed) Complexity and ecosystem management: the theory and practice of multi-agent systems. Edward Elgar, Cheltenham, pp 218–247

    Google Scholar 

  • Hogeweg P (1988) Cellular automata as a paradigm for ecological modelling. Appl Math Comput 27(1):81–100

    Article  Google Scholar 

  • Howitt RE (1995) Positive mathematical programming. Am J Agr Econ 77(2):329–42

    Article  Google Scholar 

  • Huigen MGA (2004) First principles of the MameLuke multi-actor modelling framework for land use change, illustrated with a Philippine case study. J Environ Manag 72:5–21

    Article  Google Scholar 

  • Janssen MA (2001) An exploratory integrated model to assess management of lake eutrophication. Ecol Model 140:111–124

    Article  Google Scholar 

  • Janssen MA, Jager W (2000) The human actor in ecological economic models. Ecol Econ 35(3):307–310

    Article  Google Scholar 

  • Janssen MA, Walker BH, Langridge J, Abel N (2000) An adaptive agent model for analysing ­co-evolution of management and policies in a complex rangeland system. Ecol Model 131:249–268

    Article  Google Scholar 

  • Judd KL (1997) Computational economics and economic theory: substitutes or complements. J Econ Dyn Control 21(6):907–942

    Article  Google Scholar 

  • Kamusoko C, Masamu A, Bongo A, Munyaradzi M (2009) Rural sustainability under threat in Zimbabwe: simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29:435–447

    Article  Google Scholar 

  • Kohler TA, Kresl J, West CV, Carr E, Wilshusen RH (2000) Be there then: a modelling approach to settlement determinants and spatial efficiency among late ancestral populations of the Mesa Verde region, US Southwest. In: Kohler TA, Gumerman GJ (eds) Dynamics in human and primate studies: agent-based modeling of social and spatial processes. Oxford University Press, New York, pp 145–178

    Google Scholar 

  • Langton CG (1989) Artificial life. In: Langton CG (ed) Artificial life. Addison-Wesley, Redwood City, pp 1–48

    Google Scholar 

  • Lempert R (2002) Agent-based modeling as organizational and public policy simulators. Proc Natl Acad Sci 99:7195–7196

    Article  Google Scholar 

  • Levy S (1992) Artificial life: a report from the frontier where computers meet biology. Vintage Books, New York

    Google Scholar 

  • Li H, Reynolds JF (1997) Modelling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publishers, New York, pp 211–230

    Google Scholar 

  • Liebrand WBG, Nowak A, Hegselmann R (eds) (1988) Computer modeling of social processes. SAGE Publications, London

    Google Scholar 

  • Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL (2004) A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manag 72(1–2):43–55

    Article  Google Scholar 

  • Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions: simulation of landscape transition with spatial agents. Environ Model Softw 18(6):553–563

    Article  Google Scholar 

  • Longley P, Higgs G, Martin D (1994) The predictive use of GIS to model property valuations. Int J Geogr Inform Syst 8(2):217–235

    Article  Google Scholar 

  • Ludeke AK, Maggio RC, Reid LM (1990) An analysis of anthropogenic deforestation using logistic regression and GIS. J Environ Manag 31:247–259

    Article  Google Scholar 

  • Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) MASON: a multiagent simulation environment. Simulation 81:517–527

    Article  Google Scholar 

  • Malleson N (2010) Agent-based modelling of burglary. Ph.D. Thesis, School of Geography, University of Leeds. http://www.geog.leeds.ac.uk/fileadmin/downloads/school/people/postgrads/n.malleson/thesis-final.pdf. Accessed 10 Mar 2011

  • Manson SM (2005) Agent-based modeling and genetic programming for modeling land change in the Southern Yucatan Peninsular Region of Mexico. Agr Ecosyst Environ 111:47–62

    Article  Google Scholar 

  • Mathews RB, Gilbert NG, Roach A, Polhill J, Gotts NM (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22:1447–1459

    Article  Google Scholar 

  • Mertens B, Lambin EF (1997) Spatial modelling of deforestation in southern Cameroon. Appl Geogr 17(2):143–162

    Article  Google Scholar 

  • Minar N, Burkhart R, Langton C, Askenazi M (1996) The Swarm simulation system: a toolkit for building multi-agent simulations, June. Report No.: 96-06-042. Santa Fe Institute, Santa Fe

    Google Scholar 

  • O’Sullivan D, Haklay M (2000) Agent-based models and individualism: is the world agent-based? Environ Plann 32(8):1409–1425

    Article  Google Scholar 

  • Otter HS, van der Veen A, de Vriend HJ (2001) ABLOoM: location behaviour, spatial patterns, and agent-based modelling. J Artif Soc Soc Simulat 4(4):2. http://www.jasss.soc.surrey.ac.uk/4/4/2.html. Accessed 1 Jun 2011

  • Parker DC, Meretsky V (2004) Measuring pattern outcomes in an agent-based model of edge-effect externalities using spatial metrics. Agr Ecosyst Environ 101:233–250

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann M, Deadman P (2003) Multi-Agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337

    Article  Google Scholar 

  • Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. Simulation 82:609–623

    Article  Google Scholar 

  • Rajan KS, Shibasaki R (2000) A GIS based integrated land use/cover change model to study human–land interactions. Int Arch Photogramm 13, Part B7

    Google Scholar 

  • Rindfuss RR, Walsh SJ, Mishra V, Fox J, Dolcemascolo GP (2003) Linking household and remotely sensed data; methodological and practical problems. In: Fox J, Rindfuss RR, Walsh SJ, Mishra V (eds) People and the environment: approaches for linking household and ­community surveys to remote sensing and GIS. Kluwer Academic, Boston, pp 1–31

    Google Scholar 

  • Russel S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Sanders L, Pumain D, Mathian H, Guerin-Pace F, Bura S (1997) SIMPOP: a multi-agent system for the study of urbanism. Environ Plann Plann Des 24:287–305

    Article  Google Scholar 

  • Schreinemachers P, Berger T (2006) Land use decisions in developing countries and their representation in multi-agent systems. J Land Use Sci 1(1):29–44

    Article  Google Scholar 

  • Sengupta R, Lant C, Kraft S, Beaulieu J, Peterson W, Loftus T (2005) Modeling enrolment in the conservation reserve program by using agents within spatial decision support systems: an example from southern Illinois. Environ Plann Plann Des 32(6):821–834

    Article  Google Scholar 

  • Simon HA (1957) Models of man. Wiley, New York

    Google Scholar 

  • Siqueira AD, McCracken SD, Brondizo ES, Moran EF (2002) Women in a Brazilian agricultural frontier. In: Clark G (ed) Gender at work in economic life. University Press of America, Lanham, pp 243–267

    Google Scholar 

  • Sklar FH, Costanza R (1991) The development of dynamic spatial models for landscape ecology: a review and prognosis. In: Tuner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York, pp 239–288

    Google Scholar 

  • Stephens W, Middleton T (2002) Why has the uptake of decision-support systems been so poor? In: Matthews RB, Stephens W (eds) Crop-soil simulation models: applications in developing countries. CAB Internationa, Wallingford, pp 129–147

    Chapter  Google Scholar 

  • Tobias R, Hofmann C (2004) Evaluation of free Java-libraries for social-scientific agent-based simulation. J Artif Soc Soc Simulat 7. http://jasss.soc.surrey.ac.uk/7/1/6.html. Accessed 3 May 2011

  • Torrens P, Alberti M (2000) Measuring sprawl. Working Paper 27. CASA, University College London, London

    Google Scholar 

  • Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landsc Ecol 21:1171–1183

    Article  Google Scholar 

  • Verburg P, Kok K, Veldkamp T (2005) Pixels or agents? Modelling land-use and land-cover change. IHDP Update 03(2005):8–9

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Wada Y, Rajan KS, Shibasaki R (2007) Modelling the spatial distribution of shifting cultivation in Luangprabang, Lao PDR. Environ Plann Plann Des 34:261–278

    Article  Google Scholar 

  • Walker R (1999) The structure of uncultivated wilderness: land use beyond the extensive margins. J Reg Sci 39:387–410

    Article  Google Scholar 

  • Weinberg M, Kling CL, Wilen JE (1993) Water markets and water quality. Am J Agr Econ 75(2):278–291

    Article  Google Scholar 

  • Weisbuch G, Boudjema G (1999) Dynamical aspects in the adoption of agri-environmental measures. Adv Complex Syst 2:11–36

    Article  Google Scholar 

  • Weiss G (ed) (1999) Multi-agent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  • Weyns D, Omicini A, Odell J (2007) Environment as a first class abstraction in multiagent systems. Auton Agent Multi-Agent Syst 14(1):5–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kondwani Godwin Munthali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Munthali, K.G. (2012). Agent-Based Simulation in Geospatial Analysis. In: Murayama, Y. (eds) Progress in Geospatial Analysis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54000-7_10

Download citation

Publish with us

Policies and ethics