Wrought Aluminum Alloys

  • Toshiro Kobayashi


Researches on strengthening and toughening of aluminum alloys have been made actively especially in fields related to aircraft industry. Recently, applications on automobiles, vehicles and construction have progressed and safety under dynamic loading is especially required. On the other hand, strength of conventional aluminum alloys has saturated at the strength level of about 650 MPa of the high strength 7075 alloy (Extra Super Duralumin system) for a long time; more strengthening is desired. Therefore, fracture of aluminum alloys has become a salient issue and fracture mechanical analysis is generally applied. It is known that even if there is some difference in the amount of fracture works, the fracture of aluminum alloys is essentially ductile; it is a process of nucleation, growth and coalescence of voids (dimples). To understand the relationship between fracture behavior and microstructure of an alloy is a key factor for considering suitable alloy design and high strengthening.


Aluminum Alloy Fracture Toughness Stress Corrosion Crack Slip Band Crack Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. J. Polmear: Light Alloys, Arnold, (1995).Google Scholar
  2. 2.
    E. Nes: Proc. 1st Risi Int. Symp. on Metallurgy and Mat. Sci., Rio, (1980), 36.Google Scholar
  3. 3.
    B. Bay, N. Hansen, D. A. Hughs and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 40, (1992), 205.Google Scholar
  4. 4.
    J. M. Silcock, T. J. Heal and H. K. Hardy: J. Inst. Metals, 82, (1953–54), 239.Google Scholar
  5. 5.
    G. M. Ludtka and D. E. Langhlin: Met. Trans., 12A, (1981), 2083.Google Scholar
  6. 6.
    E. A. Starke, Jr.: Aluminum Alloys — Contemporary Research and Applications, Academic Press, (1989), 35.Google Scholar
  7. 7.
    J. McEvily: Fracture Mechanics, Univ. Press of Virginia, (1978), 229.Google Scholar
  8. 8.
    G. T. Hahn and A. R. Rosenfield: Met. Trans., 6A, (1975), 653.Google Scholar
  9. 9.
    K. Welpmann, A. Gysler and G. Lütjering: Z. Metallkde, 71, (1980), 7.Google Scholar
  10. 10.
    Kelly, R. B. Nicholson: Prog. Mat. Sci., 10, (1963), 15.Google Scholar
  11. 11.
    A.K. Vasudevan and R.D. Doherty ed.: Aluminum Alloys — Contemporary Research and Applications, Academic Press. (1989).Google Scholar
  12. 12.
    J. R. Low, Jr, R. H. Van Stone and R. H. Merchant: NASA Tech. Rept. No. 2, NGR38 —087 —003, Carnegie — Mellon Univ., (1972).Google Scholar
  13. 13.
    J. Gurland and J. Plateau:Trans. ASM, 56, (1963), 442Google Scholar
  14. 14.
    K. H. Schwalbe:Eng. Frac. Mech., 9, (1977), 795Google Scholar
  15. 15.
    H. J. Kim, T. Kobayashi, M. Niinomi, T. Hagiwara, and T. Sakamoto:Mat. Sci. Forum, 217–222, (1996), 1499.Google Scholar
  16. 16.
    T. Kobayashi and M. Niinomi: MRS Int. Mtg. on Adv. Mat., 5, (1989), 379.Google Scholar
  17. 17.
    J. R. Rice and D. M. Tracey: J. Mech. Phys. Solids, 17, (1969), 201.Google Scholar
  18. 18.
    F. A. McClintock:J. Appl. Mech., 35, (1968), 363Google Scholar
  19. 19.
    L. M. Brown and J. D. Embury: Proc. 3rd Int. Conf. Strength of Metals and Alloys, ISIJ, London, (1975), 161Google Scholar
  20. 20.
    G. M. Ludtka and D. E. Laughlin: Met. Trans., 13A, (1982), 411Google Scholar
  21. 21.
    K. C. Prince and J. W. Martin: Acta Met., 27, (1979), 1401Google Scholar
  22. 22.
    G. T. Hahn.Proc. Int. School of Phys. Enrico Fermi Course LXI, Societá Italiana di, Fisica, (1976), 436Google Scholar
  23. 23.
    J. R. Rice and M. A. Johnson: Inelastic Behavior of Solids, McGraw — Hill, (1970), 641Google Scholar
  24. 24.
    G. T. Hahn and A. R. Rosenfield: ASTM STP 432, (1968), 5Google Scholar
  25. 25.
    K. H. Shwalbe: Eng. Fracture Mech., 9, (1977), 795Google Scholar
  26. 26.
    G. G. Garrett and J. F. Knott: 2nd Int. Conf. Mech. Behay. Mater., Spec. vol., (1978), 488Google Scholar
  27. 27.
    E. Hornbogen: Z. Metallkde, 66, (1975), 511.Google Scholar
  28. 28.
    J. R. Rice: J. Appl. Mech., Trans. ASME, 35, (1968), 379.Google Scholar
  29. 29.
    R. H Sailors: ASTM STP 605, (1976), 34.Google Scholar
  30. 30.
    P. E Thomason: Int. J. Frac. Mech., 7, (1971), 409Google Scholar
  31. 31.
    ASTM STP 632, (1977), 241.Google Scholar
  32. 32.
    R. H. Heyer: ASTM STP 527, (1973), 3.Google Scholar
  33. 33.
    K. H. Shwalbe and W. Setz: J. Test. Eval., 9, (1981), 182.Google Scholar
  34. 34.
    T. Kobayashi, E. Kato, N. Shimizu and Y. Ueda: Aluminium, 57, (1981), 118.Google Scholar
  35. 35.
    T. Kobayashi, M. Niinomi and K. Degawa: Mat. Sci. Techn., 5, (1989), 1013.Google Scholar
  36. 36.
    K. T. Venkateswara Rao, W. Yu and R. O. Ritchie: Met. Trans., 20A, (1989), 485.Google Scholar
  37. 37.
    J. Glazer, S. L. Verzasconi, R. R. Sawtell and J. W. Morris, Jr.: Met. Trans. 18A, (1987), 1695.Google Scholar
  38. 38.
    K. Welpmann, Y. T. Lee and M. Peters: Mat. Sci. Eng., Al29, (1990), 21.Google Scholar
  39. 39.
    H. Toda, T. Kobayashi and A. Takahashi: Alum. Trans., 1, (1999), 109.Google Scholar
  40. 40.
    A. Takahashi, T. Kobayashi and H. Toda: Int. J. Mat. Prod. Tech., 14, (1999), 217.Google Scholar
  41. 41.
    A. Takahashi, T. Kobayashi and H. Toda: Int. J. Mat. Prod. Tech., 49, (1999), 249.Google Scholar
  42. 42.
    F. H. Froes: Mat. Sci. Eng., A184, (1994), 119.Google Scholar
  43. 43.
    S. Morita, T. Kobayashi and H. Toda: Keikinzoku, 51, (2001), 307.Google Scholar
  44. 44.
    S. Morita, T. Kobayashi and H. Toda: Proc. ICAA6, 2, (1998), 1123.Google Scholar
  45. 45.
    J. T. Staley: ASTM STP 605, (1975), 71.Google Scholar

Copyright information

© Springer Japan 2004

Authors and Affiliations

  • Toshiro Kobayashi
    • 1
  1. 1.Toyohashi University of TechnologyToyohashi AichiJapan

Personalised recommendations