Principles of Strength and Toughness

  • Toshiro Kobayashi


Chapter 2 addressed general concepts of fracture mechanics, which are the most important aspects for fracture of a structure. This is a field of continuum mechanics, and fracture behaviors are considered from a macroscopic perspective to give a very effective standard in design and application. However, fracture mechanics parameters are sometimes insensitive to microstructures; hence it is more important for material engineers to examine fracture problems from the viewpoint of microstructures. Therefore, this chapter summarizes historical development of concepts and micromechanism on fracture and toughness. In addition, it reviews convenient methods for determining fracture toughness.


Fracture Toughness Brittle Fracture Ductile Fracture Ductile Cast Iron Charpy Impact Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. S. Pellini: Weld. J., 50, (1971), 91s.Google Scholar
  2. 2.
    M. Ashby: Lecture Notes, MIT., Sept., (1976).Google Scholar
  3. 3.
    A. Puskar Microplasticity and Failure of Metallic Materials, Elsevier, (1989), 168.Google Scholar
  4. 4.
    D. A. Curry and J. F. Knott: Met. Sci., 12, (1978), 511.CrossRefGoogle Scholar
  5. 5.
    T. Yokobori: Eng. Frac. Mech., 4, (1968), 179.Google Scholar
  6. 6.
    R. O. Ritchie, J. F. Knott and J. R. Rice: J. Mech., Phys. Solids, 21, (1973), 395.CrossRefGoogle Scholar
  7. 7.
    J. G. Williams: Fracture Mechanics of Polymers, Wiley, (1984); T. Kobayashi: Mat. Sci. Res. Int., 8 (2002), 141.Google Scholar
  8. 8.
    T. Kajino. T. Hayashi and T. Kobayashi: Proc. Plasticity ’89, Pergamon, 1989, 507.Google Scholar
  9. 9.
    T. Kobayashi: Tetsu-to-Hagane, 71, (1985), 654.Google Scholar
  10. 10.
    A. W. Thompson: Chemistry and Physics of Fracture, Martinus Wijhoff Pub., Dordrecht, (1987).Google Scholar
  11. 11.
    E. Hornbogen: Proc. ICSMA6, Pergamon, Melbourne, (1982), 1059.Google Scholar
  12. 12.
    A. K. Vasudevan and S. Suresh: Mat. Sci. and Eng., 72, (1985), 37.CrossRefGoogle Scholar
  13. 13.
    M. A. Sokolor, J. D. Landes and G. E. Lucas: Small Specimen Test Techniques, ASTM STP1418, (2002).Google Scholar
  14. 14.
    T. Kobayashi: Mat. Sci. Res. Int., 8, (2002), 141.Google Scholar
  15. 15.
    T. Kobayashi, K. Takai and H. Maniwa: Trans. ISIJ, 7, (1967), 115.Google Scholar
  16. 16.
    S. T. Rolfe and S. R. Novak: ASTM STP463, (1970), 124.Google Scholar
  17. 17.
    T. Kobayashi, H. J. Kim and S. Morita: Mat.-wiss. u. Werkstofftech, 32, (2001), 525; T. Kobayashi: Mat. Sci. Res. Int., 8(2002), 141.Google Scholar
  18. 18.
    N. Sugiura, E. Isobe, I. Yamamoto and T. Kobayashi: ISIJ Int., 35, (1995), 419.CrossRefGoogle Scholar
  19. 19.
    A. G. Atkins: Int. J. Frac., 95, (1999), 51.CrossRefGoogle Scholar
  20. 20.
    H. Yamamoto and T. Kobayashi: Proc. 7th Int. Conf. Fracture, Houston, (1989), 837.Google Scholar
  21. 21.
    T. Miyata, T. Tagawa and H. Yang: J. Testing and Evaluation, 28, (2000), 62.CrossRefGoogle Scholar
  22. 22.
    N. P. O’Dowd and C. F. Shih: J. Mech. Phys. Solids, 40, (1992), 939.CrossRefGoogle Scholar
  23. 23.
    T. L. Anderson: Fracture Mechanics, CRC Press, (1995).Google Scholar
  24. 24.
    C. Betegon and J. W. Hancock: J. Appl. Mech., 58, (1991), 104.CrossRefGoogle Scholar
  25. 25.
    N. P. O’Dowd, C. F. Shih and R. H. Dodds, Jr.: ASTM STP 1244, (1995), 134.Google Scholar
  26. 26.
    J. D. Sumpter and A. T. Forbes: Constraint Based Analysis of Shallow Cracks in Mild Steel, Proc. TWI/EWI/IS Int. Conf. Shallow Crack Fracture Mechanics Test and Applications, ed. by M. G. Dawes, Cambridge, (1992).Google Scholar

Copyright information

© Springer Japan 2004

Authors and Affiliations

  • Toshiro Kobayashi
    • 1
  1. 1.Toyohashi University of TechnologyToyohashi AichiJapan

Personalised recommendations