Skip to main content

Near Infrared Spectroscopy: A Tool for the Rapid Estimation of Wood Properties

  • Conference paper
Improvement of Forest Resources for Recyclable Forest Products

Abstract

The wood properties of plantation grown trees are known to be quite variable. Owing to the variation that exists the potential for improving wood properties of plantation grown trees is great but to do so many trees have to be sampled. Typically methods employed to measure important wood properties are time consuming, expensive and often destructive, i.e. the tree has to be cut down, hindering the efforts of tree breeders to improve wood properties. To adequately measure the variation that exists rapid, cost-effective methods for measuring important wood properties of large numbers of samples are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, T. P. and Burns, D. A. Tappi J. 73 (1990) 209.

    CAS  Google Scholar 

  2. Michell, A. J. Appita J. 47 (1994) 29.

    CAS  Google Scholar 

  3. Birkett, M. D. and Gambino, M. J. T. Pap. S. Afr. November/December (1988) 34.

    Google Scholar 

  4. Wright, J. A., Birkett, M. D. and Gambino, M. J. T. Tappi J. 73 (1990) 164.

    CAS  Google Scholar 

  5. Garbutt, D. C. F., Donkin, M. J. and Meyer, J. H. Pap. S. Afr. April (1992) 45.

    Google Scholar 

  6. Michell, A. J. Appita J. 48 (1995) 425.

    CAS  Google Scholar 

  7. Schimleck, L. R., Raymond, C. A., Beadle, C. L., Downes, G M., Kube, P. D. and French, J. Appita J. 53 (2000) 458.

    CAS  Google Scholar 

  8. Raymond, C. A. and Schimleck, L. R. Can. J. For. Res. 32 (2002) 170.

    Article  Google Scholar 

  9. Ona, T., Sonoda, T., Ito, K., Shibata, M., Kato, T. and Ootake, Y. J. Wood Chem. Technol. 17 (1997) 399.

    Article  CAS  Google Scholar 

  10. Ona, T., Sonoda, T., Ito, K., Shibata, M., Kato, T. and Ootake, Y. J. Wood Chem. Technol. 18 (1998) 27.

    Article  CAS  Google Scholar 

  11. Ona, T., Sonoda, T, Ito, K., Shibata, M., Kato, T. and Ootake, Y. J. Wood Chem. Technol. 18 (1998) 43.

    Article  CAS  Google Scholar 

  12. Thygesen, L. G J. Near-infrared Spectrosc 2 (1994) 127.

    Article  CAS  Google Scholar 

  13. Hoffmeyer, P. and Pedersen, J. G. Holz Roh Werkst. 53 (1995) 165.

    Article  Google Scholar 

  14. Schimleck, L. R., Michell, A. J., Raymond, C. A. and Muneri, A. Can. J. For. Res. 29 (1999) 194.

    Article  Google Scholar 

  15. Meder, R. and Thumm, A. J. Near Infrared Spectrosc. 9 (2001) 117.

    Article  Google Scholar 

  16. Gindl, W. and Teischinger, A. J. Near Infrared Spectrosc. 9 (2001) 255.

    Article  CAS  Google Scholar 

  17. Meder, R., Thumm, A. and Marston, D. J. Near-infrared Spectrosc. 11 (2003) 137.

    Article  CAS  Google Scholar 

  18. Evans, R. Holzforschung 48 (1994) 168.

    Article  Google Scholar 

  19. Evans, R. Appita J. 52 (1999) 283.

    Google Scholar 

  20. Evans, R., Stringer, S., and Kibblewhite, R. P. Appita J. 53 (2000) 450.

    Google Scholar 

  21. Schimleck, L. R. and Evans, R. IAWA J. 23 (2002) 225.

    Google Scholar 

  22. Schimleck, L. R. and Evans, R. IAWA J. 23 (2002) 217.

    Google Scholar 

  23. Schimleck, L. R. and Evans, R. Appita J. 56 (2003) 312.

    Google Scholar 

  24. Schimleck, L. R. and Evans, R. Holzforschung (accepted) (2003).

    Google Scholar 

  25. Schimleck, L. R., Mora, C. and Daniels, R. F. Can. J. For. Res. (accepted) (2003).

    Google Scholar 

  26. Kaye, W. Spectrochim. Acta. 6 (1954) 257.

    Article  CAS  Google Scholar 

  27. Schimleck, L. R., Evans, R. and Ilic, J. Can. J. For. Res. 31 (2001) 1671.

    Google Scholar 

  28. Martens, H. and Nass T. Trends Anal. Chem. 3 (1984) 204.

    Article  CAS  Google Scholar 

  29. Thomas, E. V. Anal. Chem. 66 (1994) 795A.

    Article  CAS  Google Scholar 

  30. Nyakuengama, J. G., Downes G M. and Ng, J. IAWA J. 23 (2002) 431.

    Google Scholar 

  31. Nilsson, U. and Allen, H.L. For. Ecol. Manage. 175 (2003) 367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Japan

About this paper

Cite this paper

Schimleck, L., Evans, R., Jones, D., Daniels, R., Peter, G., Mora, C. (2004). Near Infrared Spectroscopy: A Tool for the Rapid Estimation of Wood Properties. In: Ona, T. (eds) Improvement of Forest Resources for Recyclable Forest Products. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53963-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53963-6_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67968-4

  • Online ISBN: 978-4-431-53963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics