Management During the Cooling Stage

  • Nariyuki Hayashi
  • Dalton W. Dietrich


The restoration of dying neurons and neuroprotection against secondary brain damage are the main goals of intensive care unit (ICU) management during the cooling stage of brain hypothermia treatment [22,24]. Management of neuroprotection against the progression of brain edema, ischemia, intracranial pressure (ICP) elevation, free radical attack, and neuroexcitation is not sufficient for severely brain-injured patients. Prior to neuroprotection management, restoration therapy should be considered for severely brain-injured patients affected by trauma, stroke, hypoxia, or cardiac arrest.


Enteral Nutrition Brain Edema Disseminate Intravascular Coagulation Algorithm Management Severe Brain Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurons but not in astrocytes in primary culture. Neurochem 81:207–217CrossRefGoogle Scholar
  2. 2.
    Ao H, Moon JK, Tashiro M, Terasaki H (2001) Delayed platelet dysfunction in prolonged induced canine hypothermia. Resuscitation 51:83–90PubMedCrossRefGoogle Scholar
  3. 3.
    Baker AJ, Zornow MH, Scheller MS, Yaksh TL, Skilling SR, Smullin DH, Larson AA, Kuczenski R (1991) Changes in extracellular concentrations of glutamate, aspatate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rat. J Neurochem 57:1370–1379PubMedCrossRefGoogle Scholar
  4. 4.
    Billiau A, Vankelecom H (1992) Interferon-y: general biological properties and effects on the neuro-endocrine axis. In: Bartfai T, Ottoson D (eds) Neuro-immunology of fever. Pergamon, Oxford, New York, Seoul, Tokyo, pp 65–77Google Scholar
  5. 5.
    Boels PJ, Verbeuren TJ, Vanhoutte PM (1985) Moderate cooling depresses the accumulation and the release of newly synthesized catecholamines in isolated canine saphenous veins. Experientia 41:1374–1377PubMedCrossRefGoogle Scholar
  6. 6.
    Chiolero R, Lemarchand TH, Schutz Y, de Tribolet N, Felber JP, Freeman J, Jequier E (1988) Plasma pituitary hormone levels in severe trauma with or without head injury. J Trauma 28:1368–1374PubMedCrossRefGoogle Scholar
  7. 7.
    Clifton GL, Miller ER, Choi SC, Levin HS (2002) Fluid thresholds and outcome from severe brain injury. Crit Care Med 30:739–745PubMedCrossRefGoogle Scholar
  8. 8.
    Corte FD, Mancini A, Valle D, Gallizzi F, Carducci P, Mignani V, De Marinis L (1998) Provocative hypothalamopituitary axis tests in severe head injury: correlation with severity and prognosis. Crit Care Med 26:1419–1426PubMedCrossRefGoogle Scholar
  9. 9.
    Davila DR, Breif S, Simon J, Hammer RE, Brinster RL, Kelley KW (1987) Role of growth hormone in regulating T-dependant immune events in aged, nude, and transgenic rodents. J Neurosci Res 18:108–116PubMedCrossRefGoogle Scholar
  10. 10.
    Dempsey IRJ, Combs DJ, Maley ME, Cowen DE, Roy MW, Donaldson DL (1987) Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery 21:177–181PubMedCrossRefGoogle Scholar
  11. 11.
    Dietrich WD, Busto R, Halley M, Valdes I (1990) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49:486–497PubMedCrossRefGoogle Scholar
  12. 12.
    Dorman PJ, Counsell CE, Sanderrock PGA (2000) Recently developed neuroprotective therapies for acute stroke: a qualitative systematic review of clinical trials. In: Prakash A (ed) Acute stroke treatment. Adis, Hong Kong, pp 63–83Google Scholar
  13. 13.
    Dudariev VP, Lanovenko II (1999) Changes in the oxygen-binding properties of the blood in white rats under the influence of hypoxia and its pharmacological correction. Fiziol Zh 45:97–103PubMedGoogle Scholar
  14. 14.
    Fedor EJ, Fisher ER, Lee SH, Weitzel WK, Fisher B (1956) Effect of hypothermia upon induced bacteremia. Proc Soc Exp Biol Med 93:510–512PubMedGoogle Scholar
  15. 15.
    Filippi R, Reisch R, Mauer D, Perneczky A (2000) Brain tissue p 0 2 related to Sjv02, ICP, and CPP in severe brain injury. Neurosurg Rev 23:94–97PubMedGoogle Scholar
  16. 16.
    Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988) Effect on ischemia on the in vivo release of striatal dopamine, glutamate, and y-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51:1455–1464PubMedCrossRefGoogle Scholar
  17. 17.
    Hackl JM, Gottardis M, Wieser C, Rumpl E, Stadler C, Schwarz S, Moukayo R (1991) Endocrine abnormalities in severe traumatic brain injury-a cue to prognosis in severe craniocerebral trauma? Intensive Care Med 17:25–29PubMedCrossRefGoogle Scholar
  18. 18.
    Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA (2002) Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921–3928PubMedGoogle Scholar
  19. 19.
    Harrington D, Chua TP, Coast AJS (2000) The effect of solbutamol on skeletal muscle in chronic heart failure. Int J Cardiol 73:257–265PubMedCrossRefGoogle Scholar
  20. 20.
    Hayashi N (1995) Cerebral hypothermia treatment, In: Hayashi N (ed) Cerebral hypothermia treatment. Sogo Igaku, Tokyo, pp 1–105Google Scholar
  21. 21.
    Hayashi N (1997) Combination therapy of cerebral hypothermia, pharmacological activation of the dopamine system, and hormonal replacement in severely brain damaged patients. J Jpn soc Intensive Care Med 4:191–197CrossRefGoogle Scholar
  22. 22.
    Hayashi N (1997) Prevention of vegetation after severe head trauma and stroke by combination therapy of cerebral hypothermia and activation of immune-dopaminergic nervous system. Proceedings of the 6th annual meeting of Society for Treatment of Coma 6:133–145Google Scholar
  23. 23.
    Hayashi N (2000) Enhanced neuronal damage in severely brain injured patients by hypothalamus, pituitary, and adrenal axis neuro-hormonal changes. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 3–26CrossRefGoogle Scholar
  24. 24.
    Hayashi N (2000) The clinical issue and effectiveness of brain hypothermia treatment for severe brain injured patients. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 121–151CrossRefGoogle Scholar
  25. 25.
    Hayashi N, Hirayama T, Utagawa A (1994) The cerebral thermo-pooling and hypothermia treatment of critical head injury patients. In: Nagai H (ed) Intracranial pressure IX. Springer, Tokyo, pp 589–599Google Scholar
  26. 26.
    Hayashi N, Hirayama T, Utagawa T, Ohata M (1994) Systemic management of cerebral edema based on a new concept in severe head injury patients. Acta Neurochir [Suppl] 60:541–543Google Scholar
  27. 27.
    Hayashi N, Utagawa A, Kinosita K, Izumi T (1999) Application of a novel technique for clinical evaluation of nitric oxide-induced free radiacal reactions in ICU patients. Cell Mol Neurobiol 19:3–17PubMedCrossRefGoogle Scholar
  28. 28.
    Kagawa M, Nagao S, Bemana I (1996) Arginine vasopressin receptor antagonists for treatment of vasogenic brain edema: an experimental study. J Neurotrauma 13:273–279PubMedCrossRefGoogle Scholar
  29. 29.
    Kossmann T, Hans V, Lenzlinger PM, Csuka E, Stsahel PF, Trentz O, Morgani-Kossmann MC (1996) Analysis of immune mediator production following traumatic brain injury. In: Schlag G, Redel H, Traber D (eds) Shock, sepsis and organ failure. Springer, Berlin Heidelberg New York pp 263–297Google Scholar
  30. 30.
    Leibowitz SF (1999) Macronutrients and brain peptides: what they do and how they respond. In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC, Boca Raton, pp 389–06Google Scholar
  31. 31.
    Leibowiz SF, Sladek C, Spencer L, Temple D (1988) Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Res Bull 21:905–912CrossRefGoogle Scholar
  32. 32.
    Lin TW, Kuo YS (1996) Acute pulmonary oedema following administration of vasopressin for control of massive GI tract haemorrhage in a major burn patient. Burns 22:73–75PubMedCrossRefGoogle Scholar
  33. 33.
    Lindley RI (2000) Drug therapy for acute ischemic stroke: risks versus benefits. In: Prakash A (ed) Acute stroke treatment. Adis, Hong Kong, pp 53–62Google Scholar
  34. 34.
    Macintosh TK (1994) Neurological sequele of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162Google Scholar
  35. 35.
    McClain CJ, Hennig B, Ott L, Goldblum S, Young AB (1988) Mechanisms and implications of hypoalbuminemia in head-injured patients. J Neurosurg 69:386–392PubMedCrossRefGoogle Scholar
  36. 36.
    Pasko SA, Volosheniuk TG (1990) Disordered phosphorus metabolism and its correction in the acute period of severe craniocerebral trauma. Zh Vopr Neirokhir Im NN Burdenko 3:14–16Google Scholar
  37. 37.
    Poca MA, Sahuquillo J, Arribas M, Baguena M, Amoros S, Rubio E (2002) Fiberoptic intraparenchymal brain pressure monitoring with the Camino V420 monitor: reflections on our experience in 163 severely headinjured patients. J Neurotrauma 19:439–448PubMedCrossRefGoogle Scholar
  38. 38.
    Sahuquillo J, Amoros S, Santos A, Poca. MA (2000) Does an increase in cerebral perfusion pressure always mean a better oxygenated brain? A study in head-injured patients. Acta Neurochir [Suppl] 76:457–462Google Scholar
  39. 39.
    Schwarz S, Georgiadis D, Aschoff A, Schwab S (2002) Effects of body position on intracranial pressure and cerebral perfusion in patients with large hemispheric stroke. Stroke 33:497–501PubMedCrossRefGoogle Scholar
  40. 40.
    Silvka A, Coben G (1985) Hydroxyl radical attack on dopamine. J Biol Chem 260:15466–15472Google Scholar
  41. 41.
    Suarez JI (2001) Treatment of acute brain edema. Rev Neurol 32:275–281PubMedGoogle Scholar
  42. 42.
    Triolo AJ, Osterholm JL, Alexander GM, Bell RD, Frazer GD (1990) Local cerebral glucose metabolism after global ischemia: treatment by ventriculocisternal perfusion with a fluorocarbon emulsion. Neurosurgery 26:487–488CrossRefGoogle Scholar
  43. 43.
    Valeri CR, Cassidy G, Khuri S, Feingold H, Ragno G, Altschule MD (1987) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205:175–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2004

Authors and Affiliations

  • Nariyuki Hayashi
    • 1
    • 2
  • Dalton W. Dietrich
    • 3
    • 4
  1. 1.Nihon University Emergency Medical CenterTokyoJapan
  2. 2.Department of Emergency and Critical Care MedicineNihon University School of MedicineTokyoJapan
  3. 3.Department of Neurological Surgery, Neurology and Cell Biology and AnatomyUniversity of Miami School of MedicineMiamiUSA
  4. 4.The Miami Project to Cure ParalysisMiamiUSA

Personalised recommendations