Mistakes and Pitfalls of Brain Hypothermia Treatment

  • Nariyuki Hayashi
  • Dalton W. Dietrich


To prevent brain edema, early administration of manitol and glycerol were recommended previously [21]. However, brain edema progresses not only as a secondary pathophysiological change [23] of directly injured brain tissue, but also by hypothalamus-pituitary-adrenal (HPA) axis neurohoromonal dysfunction [4,9] such as cardiopulmonary dysfunction caused by catecholamine surge [9], masking brain hypoxia [9], brain thermo-pooling [7,8,12], insulin-resistant hyperglycemia [7,9,12], and vasopressin-related blood-brain barrier (BBB) dysfunction [8,14]. Therefore, prevention of secondary brain damage caused by HPA axis neurohoromonal dysfunction should precede management of brain edema by administration of manitol and glycerol [9].


Brain Edema Severe Brain Injury Vasopressin Release Hypothermia Treatment Albumin Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bioch M (1967) Cerebral effects of rewarming following prolonged hypothermia: significance for the management of severe cranio-cerebral injury and acute pyrexia. Brain 90:769–784CrossRefGoogle Scholar
  2. 2.
    Boels PJ, Verbeuren TJ, Vanhoutte PM (1985) Moderate cooling depresses the accumulation and the release of newly synthesized catecholamines in isolated canine saphenous veins. Experientia 41:1374–1377PubMedCrossRefGoogle Scholar
  3. 3.
    Castell JV, Andus T, Kunz D (1988) Interleukin-6. The major regulator of acute-phase protein synthesis in man and rat. Ann NY Acad Sci 557:87–101CrossRefGoogle Scholar
  4. 4.
    Corte FD, Mancini A, Valle D, Gallizzi F, Carducci P, Mignani V, De Marinis L (1998) Provocative hypothalamopituitary axis tests in severe head injury: correlation with severity and prognosis. Crit Care Med 26:1419–1426PubMedCrossRefGoogle Scholar
  5. 5.
    Davila DR, Breif S, Simon J, Hammer RE, Brinster RL, Kelley KW (1987) Role of growth hormone in regulating T-dependant immune events in aged, nude, and transgenic rodents. J Neurosci Res 18:108–116PubMedCrossRefGoogle Scholar
  6. 6.
    Fedor EJ, Fisher ER, Lee SH, Weitzel WK, Fisher B (1956) Effect of hypothermia upon induced bacteremia. Proc Soc Exp Biol Med 93:510–512PubMedGoogle Scholar
  7. 7.
    Fukuda H, Tomimatsu T, Watanabe N, Mu JW, Kohzuki M, Endo M, Fujii E, Kanzaki T, Murata Y (2001) Postischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia. Brain Res 10: 187–191CrossRefGoogle Scholar
  8. 8.
    Hayashi N (1995) Cerebral hypothermia treatment. In: Hayashi N (ed) Cerebral hypothermia treatment. Sogo Igaku Tokyo, pp 1–105Google Scholar
  9. 9.
    Hayashi N (1997) Prevention of vegetation after severe head trauma and stroke by combination therapy of cerebral hypothermia and activation of immunedopaminergic nervous system. Proceedings of the 6th annual meeting of Society for Treatment of Coma 6: 133–145Google Scholar
  10. 10.
    Hayashi N (2000) Enhanced neuronal damage in severely brain injured patients by hypothalamus, pituitary, and adrenal axis neuro-hormonal changes. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 3-26CrossRefGoogle Scholar
  11. 11.
    Hayashi N (2000) The clinical issue and effectiveness of brain hypothermia treatment for severe brain injured patients. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 121–151CrossRefGoogle Scholar
  12. 12.
    Hayashi N, Hirayama T, Utagawa A (1994) The cerebral thermo-pooling and hypothermia treatment of critical head injury patients. In: Nagai H (ed) Intracranial pressure IX. Springer, Berlin Heidelberg New York Tokyo, pp 589–599Google Scholar
  13. 13.
    Henning B, Honchel R, Goldblum SE, McClain CJ (1988) Tumor necrosis factor-mediated hypoalbuminemia in rabits. J Nur 118:1586–1590Google Scholar
  14. 14.
    Johnston MV, Trescher WH, Ishida A, Nakajima W (2000) Novel treatments after experimental brain injury. Semin Neonatol 5:75–86PubMedCrossRefGoogle Scholar
  15. 15.
    Kagawa M, Nagao S, Bemana I (1996) Arginine vasopressin receptor antagonists for treatment of vasogenic brain edema: an experimental study. J Neurotrauma 13:273–279PubMedCrossRefGoogle Scholar
  16. 16.
    Kossmann T, Hans V, Lenzlinger PM, Csuka E, Stsahel PF, Trentz O, Morgani-Kossmann MC (1996) Analysis of immune mediator production following traumatic brain injury. In: Schlag G, Redel H, Traber D (eds) Shock, sepsis and organ failure. Springer, Berlin Heidelberg New York Tokyo, pp 263–297Google Scholar
  17. 17.
    Kow LM, Pfaff DW (1986) Vasopressin excites ventromedial hypothalamus glucose-responsive neurons in vitro. Physiol Behav 37:153–158PubMedCrossRefGoogle Scholar
  18. 18.
    Leibowitz SF (1999) Macronutrients and brain peptides: what they do and how they respond. In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC, Boca Raton, pp 389–406Google Scholar
  19. 19.
    Lin TW, Kuo YS (1996) Acute pulmonary oedema following administration of vasopressin for control of massive GI tract haemorrhage in a major burn patient. Burns 22:73–75PubMedCrossRefGoogle Scholar
  20. 20.
    Macintosh TK (1994) Neurological sequele of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162Google Scholar
  21. 21.
    Maclain CJ, Henning B, Ott L, Goldblum S, Young AB (1988) Mechanisms and implications of hypoalbuminemia in head-injured patients. J Neurosurg 69:386–392CrossRefGoogle Scholar
  22. 22.
    Montell E, Lerin C, Newgard CB, Gomez-Foix AM (2002) Effects of modulation of glycerol kinase expression on lipid and carbohydrate metabolism in human muscle cells. J Biol Chem 277: 2682–2686PubMedCrossRefGoogle Scholar
  23. 23.
    Russwurm S, Stonans I, Schwerter K, Stonane E, Meissner W, Reinhart K (2002) Direct influence of mild hypothermia on cytokine expression and release in cultures of human peripheral blood mononuclear cells. J Interferon Cytokine Res 22:15–21CrossRefGoogle Scholar
  24. 24.
    Slikker W, Desai VG, Duhart H, Feuers R, Imam SZ (2001) Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic Biol Med 31:405–411PubMedCrossRefGoogle Scholar
  25. 25.
    Stanley BG (1993) Neuropeptide Y in multiple hypothalamic sites controls eating behavior, endocrine, and autonomic system for body energy balance. In: Colmers WF, Wahlestedt C (eds) Biology of neuropeptide Y and related peptide. Humana Press, Totowa, NJ, pp 457–509CrossRefGoogle Scholar
  26. 26.
    Suarez JI (2001) Treatment of acute brain edema. Rev Neurol 32:275–281PubMedGoogle Scholar
  27. 27.
    Temple DL (1994) The neuropeptide Y system (hypolhalamus) has a dense concentration of glucocorticoide (type II) receptors that mediate carbon hydrate intake. J Neuroendocrinol 6:479–501CrossRefGoogle Scholar
  28. 28.
    Valeri CR, Cassidy G, Khuri S, Feingold H, Ragno G, Altschule MD (1978) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205:175–181CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA (2001) Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res 95:75–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2004

Authors and Affiliations

  • Nariyuki Hayashi
    • 1
    • 2
  • Dalton W. Dietrich
    • 3
    • 4
  1. 1.Nihon University Emergency Medical CenterTokyoJapan
  2. 2.Department of Emergency and Critical Care MedicineNihon University School of MedicineTokyoJapan
  3. 3.Department of Neurological Surgery, Neurology and Cell Biology and AnatomyUniversity of Miami School of MedicineMiamiUSA
  4. 4.The Miami Project to Cure ParalysisMiamiUSA

Personalised recommendations