Skip to main content

Clinical Failures of Previous Hypothermia Management

  • Chapter
  • 117 Accesses

Abstract

Clinical issues of unsuccessful hypothermia treatment have not been elucidated at previously.Without understanding the clinical issues of hypothermia management, it is difficult to successfully treat severely injured patients with hypothermia management. Five reasons for unsuccessful treatment in previous Hypothermia management are discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billiau A, Vankelecom H (1992) Interferon-g: general biological properties and effects on the neuro-endocrine axis. In: Bartfai T, Ottoson D (eds) Neuro-immunology of fever. Pergamon, Oxford, pp 65–77

    Google Scholar 

  2. Bioch M (1967) Cerebral effects of rewarming following prolonged hypothermia: significance for the management of severe cranio-cerebral injury and acute pyrexia. Brain 90:769–784

    Article  Google Scholar 

  3. Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, Chesnut RM, Schwartz M (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344:556–563

    Article  PubMed  CAS  Google Scholar 

  4. Corte FD, Mancini A, Valle D, Gallizzi F, Carducci P, Mignani V, De Marinis L (1998) Provocative hypothalamopituitary axis tests in severe head injury: correlations with severity and prognosis. Crit Care Med 26:1419–1426

    Article  PubMed  Google Scholar 

  5. Davila DR, Breif S, Simon J, Hammer RE, Brinster RL, Kelley KW (1987) Role of growth hormone in regulating T-dependant immune events in aged, nude, and transgenic rodents. J Neurosci Res 18:F108–116

    Article  PubMed  CAS  Google Scholar 

  6. Fedor EJ, Fisher ER, Lee SH, Weitzel WK, Fisher B (1956) Effect of hypothermia upon induced bacteremia. Proc Soc Exp Bioi Med 93:510–512

    CAS  Google Scholar 

  7. Gadkary CS, Alderson P, Signorini DF (2002) Therapeutic hypothermia for head injury. Cochrane Rev 1:CDOO1048

    Google Scholar 

  8. Grundy PL, Harbuz MS, Jessop DS, Lightman SL, Sharples PM (2001) The hypothalamo-pituitary-adrenal axis response to experimental traumatic brain injury. J Neurotrauma 18:1373–1381

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi N (1995) Cerebral hypothermia treatment. In: Hayashi N (ed) Cerebral hypothermia treatment. Sogo Igaku, Tokyo, pp 1-105

    Google Scholar 

  10. Hayashi N (1997) Prevention of vegetation after severe head trauma and stroke by combination therapy of cerebral hypothermia and activation of immune dopaminergic nervous system. Proceedings of the 6th annual meeting of Society for Treatment of Coma 6:133–145

    Google Scholar 

  11. Hayashi N (2000) Enhanced neuronal damage in severely brain injured patients by hypothalamus, pituitary, and adrenal axis neuro-hormonal changes. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 3–26

    Chapter  Google Scholar 

  12. Hayashi N (2000) The clinical issue and effectiveness of brain hypothermia treatment for severe brain injured patients. In: Hayashi N (ed) Brain hypothermia. Springer, Berlin Heidelberg New York Tokyo, pp 121–151

    Chapter  Google Scholar 

  13. Hayashi N, Kinoshita K, Shibuya T (1997) The prevention of cerebral thermo-pooling, damage of Al 0 nervous system, and free radical reactions by control of brain tissue temperature in severely brain injured patients. In: Teelken T (ed) Neurochemistry. Plenum New York, pp 97–103

    Chapter  Google Scholar 

  14. Kossmann T, Hans V, Lenzlinger PM, Csuka E, Stsahel PF, Trentz O, Morgani-Kossmann MC (1996) Analysis of immune mediator production following traumatic brain injury. In: Schlag O, Redel H, Traber D (eds) Shock, sepsis and organ failure. Berlin Heidelberg New York Tokyo, pp 263–297

    Google Scholar 

  15. Leibowitz SF (1999) Macronutrients and brain peptides: what they do and how they respond. In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC, Boca Raton, pp 389–406

    Google Scholar 

  16. Leibowiz SF, Sladek C, Spencer L, Temple D (1988) Neuropeptide Y, epinephrine and norepinephrine in the para ventricular nucleus: stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Res Bull 21:905

    Article  Google Scholar 

  17. Payne LC, Obal F Jr, Opp MR, Krueger JM (1992) Stimulation and inhibition of growth hormone secretion by IL1: the involvement of growth hormone. Neuroendocrinology. 56:118–123

    Article  PubMed  CAS  Google Scholar 

  18. Russwurm S, Stonans I, Schwerter K, Stonane E, Meissner W, Reinhart K (2002) Direct influence of mild hypothermia on cytokine expression and release in cultures of human peripheral blood mononuclear cells. J Interferon Cytokine Res 22:15–21

    Article  Google Scholar 

  19. Stanley BO (1993) Neuropeptide Y in multiple hypothalamic sites controls eating behavior, endocrine, and autonomic system for body energy balance. In: Colmers WF, Wahlestedt C (eds) Biology of neuropeptide Y and related peptides. Humana Press, Totowa, NJ, 457–509

    Chapter  Google Scholar 

  20. Temple DL (1994) The neuropeptide Y system (hypothalamus) has a dense concentration of glucocorticoide (type II) receptors that mediate carbon hydrate intake. J Neuroendocrinol 6:479–501

    Article  Google Scholar 

  21. Woiciechowsky C, Schoning B, Daberkow N, Asche K, Stoltenburg G, Lanksch WR, Yolk HD (1999) Brain-IL-1beta induces local inflammation but systemic anti-inflammatory response through stimulation of both hypothalamic-pituitary-adrenal axis and sympathetic nervous system. Brain Res 816:563–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Japan

About this chapter

Cite this chapter

Hayashi, N., Dietrich, D.W. (2004). Clinical Failures of Previous Hypothermia Management. In: Brain Hypothermia Treatment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53953-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53953-7_25

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67964-6

  • Online ISBN: 978-4-431-53953-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics