Advertisement

Economic Fluctuations and Statistical Physics: The Puzzle of Large Fluctuations

  • H. E. Stanley
  • Xavier Gabaix
  • Parameswaran Gopikrishnan
  • Vasiliki Plerou
Conference paper

Abstract

We present an overview of recent research joining ideas of economic theory and statistical physics to try to better understand puzzles regarding economic fluctuations. One of these puzzles is how to describe outliers, phenomena that lie outside of patterns of statistical regularity. We review evidence consistent with the possibility that such outliers may not exist. This possibility is supported by recent analysis by Plerou et al of a database containing the sale price of each trade of every stock. Further, the data support the picture of economic fluctuations, due to Plerou et al., in which a financial market alternates between being in an “equilibrium phase” where market behavior is split roughly equally between buying and selling, and an “out-of-equilibrium phase” where the market is mainly either buying or selling.

Keywords

Stock Market Stock Price Random Matrix Universality Class Price Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Gutenberg and C. F. RichterSeismicity of the Earth and Associated Phenomenon 2nd Edition (Princeton University Press, Princeton, 1954)Google Scholar
  2. 2.
    D. L. TurcotteFractals and Chaos in Geology and Geophysics(Cambridge University Press, Cambridge, 1992)Google Scholar
  3. 3.
    J. B. Rundle, D. L. Turcottc, and W. KleinReduction and Predictability of Natural Disasters(Addison-Wesley, Reading MA, 1996).Google Scholar
  4. 4.
    X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, “A Theory of Power-Law Distributions in Financial Market Fluctuations,” Nature 423, 267–270 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, “A theory of large fluctuations in stock market activity”Quarterly Journal of Economics(to be submitted).Google Scholar
  6. 6.
    V. ParetoCours d’Economic Politique(Lausanne, Paris, 1897)Google Scholar
  7. 7.
    S. Solomon and P. Richmond, “Stable power laws in variable economies; LotkaVolterra implies Pareto-Zipf” Eur Phys J B 27 (2002) 257–261.ADSGoogle Scholar
  8. 8.
    Feenberg, D. and J. Poterba, “Income Inequality and the Incomes of Very High-Income Taxpayers: Evidence from Tax Returns,” in1ivr Policy and the. Economy, ed. J. Poterba (Cambridge, MA: MIT Press, 1993), 145–77.Google Scholar
  9. 9.
    B. B. Mandelbrot, “The Variation of Certain Speculative Prices,”J. Business 36 (1963) 394–419.CrossRefGoogle Scholar
  10. 10.
    H. F. StanleyIntroduction to Phase Transitions and Critical Phenomena(Oxford University Press, Oxford, 1971).Google Scholar
  11. 11.
    H. E. Stanley, “Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena,”Rev. Mod. Phys. 71 (1999) 5358–5366.CrossRefGoogle Scholar
  12. 12.
    H. Takayasu, ed., Empirical Science of Financial Fluctuations: The Advent of Econophysics (Springer, Berlin, 2002).Google Scholar
  13. 13.
    R. N. Mantegna and H. E. StanleyAn Introduction to Econophysics: Correlations and Complexity in Finance(Cambridge University Press, Cambridge, 2000)Google Scholar
  14. 14.
    J.-P. Bouchaud, “Power Laws in Economics and Finance: Some Ideas from Physics,”Quantitative Finance 1 (2001) 105–112.CrossRefGoogle Scholar
  15. 15.
    J. P. Bouchaud and M. PottersTheory of Financial Risk(Cambridge University Press, Cambridge, 2000).Google Scholar
  16. 16.
    H. Levy, M. Levy and S. SolomonMicroscopic Simulation of Financial Markets(Academic Press, New York, 2000)Google Scholar
  17. 17.
    B. M. RoehnerHidden Collective Factorsin Speculative Trading(Springer, Berlin, 2001).MATHCrossRefGoogle Scholar
  18. 18.
    B. M. RoehnerPatterns of Speculation(Cambridge Univ Press, Cambridge, 2002).MATHCrossRefGoogle Scholar
  19. 19.
    W. Paul and A. BaschnagelStochastic processes from physics to finance(Springer, Berlin, 1999).MATHGoogle Scholar
  20. 20.
    J. VoitThe Statistical Mechanics of Financial Markets(Springer, Berlin, 2001).MATHGoogle Scholar
  21. 21.
    R. L. Axtell, “Zipf Distribution of US Firm Sizes”Science 293 (2001) 1818–1821.ADSCrossRefGoogle Scholar
  22. 22.
    M. H. R. Stanley, S. V. Buldyrev, S. Havlin, R. Mantegna, M. A. Salinger, and H. E. Stanley, “Zipf Plots and the Size Distribution of Firms,”Econ. Lett. 49 (1996) 453–457CrossRefGoogle Scholar
  23. 23.
    M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, and H. E. Stanley, “Scaling Behavior in the Growth of Companies,” Nature 379 (1996) 804–806.ADSCrossRefGoogle Scholar
  24. 24.
    L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley, “Scaling Behavior in Economics: I. Empirical Results for Company Growth,” J. Phys. I France 7 (1997) 621–633.CrossRefGoogle Scholar
  25. 25.
    S. V. Buldyrev, L. A. N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley, “Scaling Behavior in Economies: II. Modeling of Company Growth,” J. Phys. I France7(1997) 635–650.CrossRefGoogle Scholar
  26. 26.
    II. Takay-asu and K. Okuyania, “Country Dependence on Company Size Distributions and a Numerical Model Based on Competition and Cooperation,”Fractals 6 (1998) 67–79.CrossRefGoogle Scholar
  27. 27.
    D. Champernowne, “A Model of Income Distribution,”Economic Journal 83 (1953) 318–351.CrossRefGoogle Scholar
  28. 28.
    M. Levy, and S. Solomon, “Dynamical Explanation for the Emergence of Power Law in a Stock Market Model,” International Journal of Modern Physics C 7 (1996) 65–72.ADSCrossRefGoogle Scholar
  29. 29.
    D. H. Zanette and S. C. Manrubia, “Role of Intermittency in Urban Development: A Model of Large-Scale City Formation,”Phys. Rev. Lett. 79 (1997) 523–526ADSCrossRefGoogle Scholar
  30. 30.
    M. Marsili and Y. C. Zhang, “Interacting Individuals Leading to Zipf’s Law,”Phys. Rev. Lett. 80 (1998) 2741–2744.ADSCrossRefGoogle Scholar
  31. 31.
    X. Gabaix, “Zipf’s Law for Cities: An Explanation,”Quarterly Journal of Economics 114 (1999) 739–767.MATHCrossRefGoogle Scholar
  32. 32.
    X. Gabaix and Y. Ioannides, “The Evolution of the City Size Distribution,” inHandbook of Urban and Regional Economics Vol. 4, edited by V. Henderson and J. Thisse (North Holland, Amsterdam, 2004).Google Scholar
  33. 33.
    V. Plerou, L. A. N. Amaral, P. Gopikrishnan, M. Meyer, and H. E. Stanley, “Similarities between the Growth Dynamics of University Research and of Competitive Economic Activities,” Nature 400 (1999) 433–437.ADSCrossRefGoogle Scholar
  34. 34.
    D. Canning, L. A. N. Amaral, Y. Lee, M. Meyer, and H. E. Stanley, “A Power Law for Scaling the Volatility of GDP Growth Rates with Country Size,”Econ. Lett. 60 (1998) 335–341.MATHCrossRefGoogle Scholar
  35. 35.
    Y. Lee, L. A. N. Amaral, D. Canning, M. Meyer, and H. E Stanley, “Universal features in the growth dynamics of complex organizations” Phys. Rev. Letters 81. (1998) 3275–3278.ADSCrossRefGoogle Scholar
  36. 36.
    T. Keitt and H. E. Stanley, “Scaling in the Dynamics of North American Breeding-Bird PopuIations,” Nature 393 (1998) 257.ADSCrossRefGoogle Scholar
  37. 37.
    L. A. N. Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger, and H. E. Stanley, “Power Law Scaling for a System of Interacting Units with Complex Internal Structure,’Phys. Rev. Lett. 80 (1998) 1385–1388.ADSCrossRefGoogle Scholar
  38. 38.
    J. Sutton, “The Variance of Firm Growth Rates: The Scaling Puzzle,”Physica A 312 (2002) 577.ADSMATHCrossRefGoogle Scholar
  39. 39.
    F. Cecconi, M. Marsili, J. R. Banavar, and A. Maritan, “Diffusion, Peer Pres-sure, and Tailed Distributions,”Phys. Rev. Lett. 89 (2002) 088102.ADSCrossRefGoogle Scholar
  40. 40.
    X. Gabaix “Power Laws and the Origins of the Macroeconomic Fluctuations”MIT mimeo(2001).Google Scholar
  41. 41.
    M. Wyart and J.-P. Bouchaud. “Statistical Models for Company Growth,” tond-mat/0210479 (October 2002).Google Scholar
  42. 42.
    G. De Fabritiis, F. Pammolli, and M. Riccaborn, “On Size and Growth of Business Firms,” Physica A 324 (2003) 38–44.ADSMATHCrossRefGoogle Scholar
  43. 43.
    G. Bottazzi and A. Secchi, “Explaining the Distribution of Firm Growth Rates” (preprint).Google Scholar
  44. 44.
    T. Lux, “The Stable Paretian Hypothesis and the Frequency of Large Returns: An Examination of Major German Stocks,”Appl. Finan. Econ. 6 (1996) 463–475.ADSCrossRefGoogle Scholar
  45. 45.
    P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley, “Inverse Cubic Law for the Distribution of Stock Price Variations,”Eur. Phys. J. B 3 (1998) 139–140.ADSCrossRefGoogle Scholar
  46. 46.
    V. Plerou, P. Copikrishnan, L. A. N. Amaral, M. Meyer, and H. E. Stanley, “Scaling of the Distribution of Price Fluctuations of Individual Companies,”Phys. Rev. E 60 (1999) 6519–6529.ADSCrossRefGoogle Scholar
  47. 47.
    P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley, “Scaling of the Distributions of Fluctuations of Financial Market Indices,”Phys. Rev. E 60 (1999) 5305–5316.ADSCrossRefGoogle Scholar
  48. 48.
    K. Matia, L. A. N. Amaral, S. Goodwin, and H. E. Stanley, “Non-Lévy Distribution of Commodity Price Fluctuations”Phys. Rev. E: Rapid Communications 66 (2002) 045–103. tond-mat/0202028.Google Scholar
  49. 49.
    K. Matia, Y. Ashkenazy, and H. E. Stanley, “Multifractal Properties of Price Fluctuations of Stocks and Commodities,”Europhys. Lett. 61 (2003) 422–428.ADSCrossRefGoogle Scholar
  50. 50.
    V. Plerou, P. Gopikrishnan, and H. E. Stanley, “Two-Phase Behaviour of Financial Markets,”Nature 420 (2002) xxx-xxx.Google Scholar
  51. 51.
    V. Plerou, P. Gopikrishnan, and H. E. Stanley, “Symmetry Breaking in Stock Demand”, Phys. Rev. E (submitted) tond-mat/0111349.Google Scholar
  52. 52.
    R. N. Mantegna and H. E. Stanley “Stochastic Process with Ultraslow Convergence to a Gaussian: the Truncated Lévy Flight,”Phys. Rev. Lett. 73 (1994) 2946–2949.MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    R. N. Mantegna and H. E. Stanley, “Scaling Behavior in the Dynamics of an Economic Index” Nature 376 (1995) 46–49.ADSCrossRefGoogle Scholar
  54. 54.
    B. Podobnik, P. Ch. Ivanov, Y. Lee, A. Chessa, and H. E. Stanley, “Systems with correlations in the variance: Generating power law tails in probability distributions” Europhysics Letters 50 (2000) 711–717ADSCrossRefGoogle Scholar
  55. 55.
    R. N. Mantegna and H. E. Stanley, “Ultra-Slow Convergence to a Gaussian: The Truncated Lévy Flight” inLévy Flights and Related Topics in Physics[Proc. 1994 International Conf. on Lévy Flights], edited by M. F. Shlesinger, G. M. Zaslaysky, and U. Frisch (Springer, Berlin,1995), pp. 300–312.CrossRefGoogle Scholar
  56. 56.
    R. N. Mantegna and H. E. Stanley, “Modeling of Financial Data: Comparison of the Truncated Lévy Flight and the ARCH(1) and GAR.CH(1,1) Processes” [Proc. Int’l IUPAP Conf. on Statistical Physics, Taipei], Physica A 254 (1998) 77–84.CrossRefGoogle Scholar
  57. 57.
    B. Podobnik, P. Ch. Ivanov, Y. Lee, and H. E. Stanley, “Scale-invariant Truncated Lévy Process,” Europhysics Letters 52 (2000) 491–497.ADSCrossRefGoogle Scholar
  58. 58.
    P. Ch. Ivanov, B. Podobnik, Y. Lee, and H. E. Stanley (2001), “Truncated Lévy Process with Scale-Invariant Behavior” [Proc. NATO Advanced Research Workshop on Application of Physics in Economic Modeling, Prague], Physica A 299, 154–160.ADSMATHCrossRefGoogle Scholar
  59. 50.
    J. A. Skjeltorp (2001), “Scaling in the Norwegian Stock Market,” Physica 283, 486–528.Google Scholar
  60. 60.
    B. LeBaron, “Stochastic Volatility as a Simple Generator of Financial Power Laws and Long MemoryQuantitative Finance 2 (2001) 621–631.MathSciNetCrossRefGoogle Scholar
  61. 61.
    H. E. Stanley and V. Plerou, “Scaling and Universality in Economics: Empirical results and Theoretical Interpretation” Quantitative Finance 1 (2001) 563–567.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng and H. E. Stanley, “The Statistical Properties of the Volatility of Price Fluctuations,”Phys. Rev. E 60 (1999) 1390–1400.ADSCrossRefGoogle Scholar
  63. 63.
    V. Plerou, P. Gopikrishnan, L. A. N. Amaral, X. Gabaix, and H. E. Stanley, “Diffusion and Economic Fluctuations,”Phys. Rev. E (Rapid Communicatzons) 62 (2000) 3023–3026.ADSCrossRefGoogle Scholar
  64. 64.
    P. Gopikrishnan, V. Plerou, X. Cabaix, and H. E. Stanley, “Statistical Properties of Share Volume Traded in Financial Markets,” Phys.Rev. E (Rapid Communications) 62 4493–4496Google Scholar
  65. 65.
    V. Plerou, P. Gopikrishnan, X. Gahaix, L. A. N. Amaral, and H. E. Stanley, “Price Fluctuations, Market Activity, and Trading Volume” [Proc. 2000 Santa Fe Econophysics Conference], Quantitative Finance 1 (2001) 262–269.CrossRefGoogle Scholar
  66. 66.
    Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanley, “Quantification of Correlations in Economic Time Series” Physica A 245 (1997) 437–440.MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    P. Cizeau, Y. Liu, M. Meyer, C.-K. Peng, and H. E. Stanley, “Volatility distribution in the S&P500 Stock Index” Physica A 245 (1997) 441–445.MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    B. Podobnik, K. Matia, A. Chessa, P. Ch. lvanov, Y. Lee, and H. E. Stanley, “Time Evolution of Stochastic Processes with Correlations in the Variance: Stability in Power-Law Tails of Distributions” Physica A 300 (2001) 300–309.ADSMATHCrossRefGoogle Scholar
  69. 69.
    T. Guhr, A. Müller-Groeling, and H. A. Weidenmiiller, “Random-Matrix Theories in Quantum Physics: Common Concepts,”Phys. Reports 299 (1998) 189–425.ADSCrossRefGoogle Scholar
  70. 70.
    M. L. Mehta and F. J. Dyson, “Statistical Theory of the Energy Levels of Complex Systems. V,”J. Math. Phys. 4 (1963) 713–719.MathSciNetADSMATHCrossRefGoogle Scholar
  71. 71.
    F. J. Dyson, “The Distribution of Singular Values of Certain Random Matrices,”Revista Mexicana de Física 20 (1971) 231.Google Scholar
  72. 72.
    A. M. Sengupta and P. P. Mitra, “Distributions of Singular Values for Some Random Matrices,”Phys. Rev. E 60 (1999) 3389–3392.ADSCrossRefGoogle Scholar
  73. 73.
    L. Laloux, P. Cizeau, J.-P. Bouchaud and M. Potters, “Noise Dressing of Financial Correlation Matrices,”Phys. Rev. Lett. 83 (1999) 1469–1482.ADSCrossRefGoogle Scholar
  74. 74.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley, “Universal and Nonuniversal Properties of Financial Cross-Correlation Matrices,”Phys. Rev. Lett. 83 (1999) 1471–1475.ADSCrossRefGoogle Scholar
  75. 75.
    P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley, “Quantifying and Interpreting Collective Behavior in Financial Markets,”Phys. Rev. E: Rapid Communications 64 (2001) 035–106.Google Scholar
  76. 76.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr, and H. E. Stanley, “A Random Matrix approach to Financial Cross-Correlations”Phys. Rev. E 65 (2002) 066–126 cond-mat/0108023.CrossRefGoogle Scholar
  77. 77.
    B. Rosenow, V. Plerou, P. Gopikrishnan, and H. E. Stanley, “Portfolio Optimization and the Random Magnet Problem,”Europhys. Lett. 59 (2002) 500–506 coud-mat/0111537.ADSCrossRefGoogle Scholar
  78. 78.
    S. Ghashgaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, “Turbulent Cascades in Foreign Exchange Markets,” Nature 381 (1996) 767–770.ADSCrossRefGoogle Scholar
  79. 79.
    R. N. Mantegna and H. E. Stanley, “Turbulence and Exchange Markets,”Nature 383 (1996) 587–588.ADSCrossRefGoogle Scholar
  80. 80.
    R. N. Mantegna and H. E. Stanley, “Stock Market Dynamics and Turbulence: Parallel Analysis of Fluctuation Phenomena” [Proc. International Conference on Pattern Formation in Fluids and Materials]Physica A 239 (1997) 255–266.ADSCrossRefGoogle Scholar
  81. 81.
    V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley, “Quantifying Stock Price Response to Demand Fluctuations,”Phys. Rev. E 66 (2002) 027–104 condmat/ 0106657.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2004

Authors and Affiliations

  • H. E. Stanley
    • 1
  • Xavier Gabaix
    • 2
    • 3
  • Parameswaran Gopikrishnan
    • 1
  • Vasiliki Plerou
    • 1
  1. 1.Center for Polymer Studies, and Department of PhysicsBoston UniversityBostonUSA
  2. 2.Department of EconomicsMITCambridgeUK
  3. 3.National Bureau of Economic ResearchCambridgeUK

Personalised recommendations