Adult Neurogenesis in Parkinson’s Disease


Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Its pathogenesis is based on diminution of neurons in the substantia nigra (SN) that under normal conditions acts as the source of dopamine in the nigrostriatal circuit. Although the etiology of PD remains poorly understood, recent understanding of the mechanisms of neurogenesis may reveal insights into the pathogenesis of PD and provide useful tools to treat PD. This review will focus on adult neurogenesis in SN, subventricular zone, striatum and olfactory bulb of PD and PD models. We also focus on adult neurogenesis in genetic PD models. The enhancement of progenitor cells may represent a potential new source of cells for replacement therapy in PD. In this review, possible treatments to enhance neurogenesis in PD models are also described.


Substantia Nigra Olfactory Bulb Adult Neurogenesis Neural Precursor Cell Newborn Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO).


  1. Baker SA, Baker KA, Hagg T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 2004;20:575–579.PubMedCrossRefGoogle Scholar
  2. Barz S, Hummel T, Pauli E, Majer M, Lang CJ, Kobal G. Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology 1997;49:1424–1431.PubMedCrossRefGoogle Scholar
  3. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197–211.Google Scholar
  4. Cao XQ, Arai H, Ren YR, et al. Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 2006;99:861–867.PubMedCrossRefGoogle Scholar
  5. Chen Y, Ai Y, Slevin JR, Maley BE, Gash DM. Progenitor proliferation in the adult hippocampus and substantia nigra induced by glial cell line-derived neurotrophic factor. Exp Neurol 2005;196:87–95.PubMedCrossRefGoogle Scholar
  6. Cooper O, Isacson O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 2004;24:8924–8931.PubMedCrossRefGoogle Scholar
  7. Crews L, Mizuno H, Desplats P, et al. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 2008;28:4250–4260.PubMedCrossRefGoogle Scholar
  8. Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 2003;100:9023–9027.PubMedCrossRefGoogle Scholar
  9. Dawirs RR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 1998;105:317–327.PubMedCrossRefGoogle Scholar
  10. Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61:413–426.PubMedGoogle Scholar
  11. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997;17:5046–5061.PubMedGoogle Scholar
  12. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–1317.PubMedCrossRefGoogle Scholar
  13. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2004;101:10177–10182.PubMedCrossRefGoogle Scholar
  14. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 2003;23:9357–9366.PubMedGoogle Scholar
  15. Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in Parkinsonian monkeys treated with GDNF. Nature 1996;380:252–255.PubMedCrossRefGoogle Scholar
  16. Gould E, Gross CG. Neurogenesis in adult mammals: some progress and problems. J Neurosci 2002;22:619–623.PubMedGoogle Scholar
  17. Hartung T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr Opin Hematol 1998;5:221–225.PubMedCrossRefGoogle Scholar
  18. Hawkes CH, Shephard BC. Olfactory evoked responses and identification tests in neurological disease. Ann N Y Acad Sci 1998;855:608–615.PubMedCrossRefGoogle Scholar
  19. Hawkes CH, Shephard BC, Daniel SE. Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:436–446.PubMedCrossRefGoogle Scholar
  20. Hayakawa H, Hayashita-Kinoh H, Nihira T, Seki T, Mizuno Y, Mochizuki H. The isolation of neural stem cells from the olfactory bulb of Parkinson’s disease model. Neurosci Res 2007;57:393–398.PubMedCrossRefGoogle Scholar
  21. He XJ, Nakayama H, Dong M, et al. Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease. J Neuropathol Exp Neurol 2006;65:873–882.PubMedCrossRefGoogle Scholar
  22. Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004;5:805–815.PubMedCrossRefGoogle Scholar
  23. Hoglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 2004;7:726–735.PubMedCrossRefGoogle Scholar
  24. Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 2007;104:3585–3590.PubMedCrossRefGoogle Scholar
  25. Huang HY, Lin SZ, Kuo JS, Chen WF, Wang MJ. G-CSF protects dopaminergic neurons from 6-OHDA-induced toxicity via the ERK pathway. Neurobiol Aging 2007;28:1258–1269.PubMedCrossRefGoogle Scholar
  26. Jung KH, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Res 2006;1073–1074:190–201.PubMedCrossRefGoogle Scholar
  27. Kaneko S, Onodera M, Fujiki Y, Nagasawa T, Nakauchi H. Simplified retroviral vector gcsap with murine stem cell virus long terminal repeat allows high and continued expression of enhanced green fluorescent protein by human hematopoietic progenitors engrafted in nonobese diabetic/severe combined immunodeficient mice. Hum Gene Ther 2001;12:35–44.PubMedCrossRefGoogle Scholar
  28. Kawai T, Takagi N, Miyake-Takagi K, Okuyama N, Mochizuki N, Takeo S. Characterization of BrdU-positive neurons induced by transient global ischemia in adult hippocampus. J Cereb Blood Flow Metab 2004;24:548–555.PubMedCrossRefGoogle Scholar
  29. Kay JN, Blum M. Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 2000;22:56–67.PubMedCrossRefGoogle Scholar
  30. Kippin TE, Kapur S, van der Kooy D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 2005;25:5815–5823.PubMedCrossRefGoogle Scholar
  31. Komine-Kobayashi M, Zhang N, Liu M, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 2006;26:402–413.PubMedCrossRefGoogle Scholar
  32. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002;22:6639–6649.PubMedGoogle Scholar
  33. Liu BF, Gao EJ, Zeng XZ, et al. Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain. Brain Res 2006;1106:30–39.PubMedCrossRefGoogle Scholar
  34. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 2006;26:13114–13119.PubMedCrossRefGoogle Scholar
  35. Mason HA, Rakowiecki SM, Gridley T, Fishell G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 2006;28:49–57.PubMedCrossRefGoogle Scholar
  36. Meuer K, Pitzer C, Teismann P, et al. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J Neurochem 2006;97:675–686.PubMedCrossRefGoogle Scholar
  37. Milosevic J, Schwarz SC, Maisel M, et al. Dopamine D2/D3 receptor stimulation fails to promote dopaminergic neurogenesis of murine and human midbrain-derived neural precursor cells in vitro. Stem Cells Dev 2007;16:625–635.PubMedCrossRefGoogle Scholar
  38. Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P. Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 2005;132:767–776.PubMedCrossRefGoogle Scholar
  39. Nait-Oumesmar B, Picard-Riera N, Kerninon C, et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci USA 2007;104:4694–4699.PubMedCrossRefGoogle Scholar
  40. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002;110:429–441.PubMedCrossRefGoogle Scholar
  41. Oizumi H, Hayashita-Kinoh H, Hayakawa H, et al. Alteration in the differentiation-related molecular expression in the subventricular zone in a mouse model of Parkinson’s disease. Neurosci Res 2008;60:15–21.PubMedCrossRefGoogle Scholar
  42. Parish CL, Beljajeva A, Arenas E, Simon A. Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 2007;134:2881–2887.PubMedCrossRefGoogle Scholar
  43. Pearce RK, Hawkes CH, Daniel SE. The anterior olfactory nucleus in Parkinson’s disease. Mov Disord 1995;10:283–287.PubMedCrossRefGoogle Scholar
  44. Peng J, Xie L, Jin K, Greenberg DA, Andersen JK. Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neuroscience 2008;153:664–670.PubMedCrossRefGoogle Scholar
  45. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004;56:173–181.PubMedCrossRefGoogle Scholar
  46. Schabitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 2003;34:745–751.PubMedCrossRefGoogle Scholar
  47. Schneider A, Kruger C, Steigleder T, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 2005;115:2083–2098.PubMedCrossRefGoogle Scholar
  48. Sehara Y, Hayashi T, Deguchi K, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res 2007;1151:142–149.PubMedCrossRefGoogle Scholar
  49. Seki T, Arai Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 1993;13:2351–2358.PubMedGoogle Scholar
  50. Suzuki SO, Goldman JE. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci 2003;23:4240–4250.PubMedGoogle Scholar
  51. Suzuki A, Obi K, Urabe T, et al. Feasibility of ex vivo gene therapy for neurological disorders using the new retroviral vector GCDNsap packaged in the vesicular stomatitis virus G protein. J Neurochem 2002;82:953–960.PubMedCrossRefGoogle Scholar
  52. Tanaka R, Yamashiro K, Mochizuki H, et al. Neurogenesis after transient global ischemia in the adult hippocampus visualized by improved retroviral vector. Stroke 2004;35:1454–1459.PubMedCrossRefGoogle Scholar
  53. Tani M, Hayakawa H, Yasuda T, Nihira T, Hattori N, Mizuno Y, Mochizuki H. Ectopic expression of alpha-synuclein affects the migration of neural stem cells in mouse subventricular zone.J Neurochem. 2010;115:854–863.PubMedCrossRefGoogle Scholar
  54. Tsai KJ, Tsai YC, Shen CK. G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J Exp Med 2007;204:1273–1280.PubMedCrossRefGoogle Scholar
  55. Van Kampen JM, Eckman CB. Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 2006;26:7272–7280.PubMedCrossRefGoogle Scholar
  56. Van Kampen JM, Robertson HA. A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 2005;136:381–386.PubMedCrossRefGoogle Scholar
  57. Van Kampen JM, Hagg T, Robertson HA. Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 2004;19:2377–2387.PubMedCrossRefGoogle Scholar
  58. Winner B, Lie DC, Rockenstein E, et al. Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 2004;63:1155–1166.PubMedGoogle Scholar
  59. Winner B, Geyer M, Couillard-Despres S, et al. Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 2006;197:113–121.PubMedCrossRefGoogle Scholar
  60. Winner B, Rockenstein E, Lie DC, et al. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 2008;29:913–925.PubMedCrossRefGoogle Scholar
  61. Winner B, Desplats P, Hagl C, et al. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 2009;219:543–552.PubMedCrossRefGoogle Scholar
  62. Yamada M, Onodera M, Mizuno Y, Mochizuki H. Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 2004;124:173–181.PubMedCrossRefGoogle Scholar
  63. Yang P, Arnold SA, Habas A, Hetman M, Hagg T. Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 2008;28:2231–2241.PubMedCrossRefGoogle Scholar
  64. Yoshimi K, Ren YR, Seki T, et al. Possibility for neurogenesis in substantia nigra of Parkinsonian brain. Ann Neurol 2005;58:31–40.PubMedCrossRefGoogle Scholar
  65. Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2003;100:7925–7930.PubMedCrossRefGoogle Scholar
  66. Zhu DY, Lau L, Liu SH, Wei JS, Lu YM. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2004;101:9453–9457.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of NeurologySchool of Medicine, Kitasato UniversitySagamiharaJapan

Personalised recommendations