Culturing Adult Neural Stem Cells: Application to the Study of Neurodegenerative and Neuropsychiatric Pathology


Stem cells exist in many, perhaps all, adult tissues and serve the common function of a reservoir of precursors that can mediate cell turnover or repair damage. Among tissue-specific stem cell populations, neural stem cells are particularly amenable to study because they are readily isolated and cultured in simple culture systems that allow demonstration of cell-autonomous self-renewal and multipotentiality. Here, we describe the most widely employed culture system, the neurosphere assay, used to reveal these cardinal properties of neural stem cells which respond to specific growth factors and proliferate in serum-free media to form clonal sphere colonies. Although several pitfalls and limitations exist, the neurosphere assay can provide detailed information about kinetics and behavior of neural stem cells when utilized under appropriate conditions. Further, the neurosphere assay together with histochemical analysis using nucleotide analog labeling may be applied to estimate the number and cellular kinetics of neural stem cells in the adult brain under physiological and pathological conditions.


Neural Stem Cell Ganglionic Eminence Adult Neural Stem Cell Neurosphere Culture Neurosphere Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguado T, Monory K, Palazuelos J et al (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19:1704–1706PubMedGoogle Scholar
  2. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758PubMedCrossRefGoogle Scholar
  3. Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45PubMedCrossRefGoogle Scholar
  4. Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320PubMedCrossRefGoogle Scholar
  5. Batista CM, Kippin TE, Willaime-Morawek S et al (2006) A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington’s disease R6/2 mouse. J Neurosci 26:10452–10460PubMedCrossRefGoogle Scholar
  6. Brännvall K, Korhonen L, Lindholm D (2002) Estrogen-receptor-dependent regulation of neural stem cell proliferation and differentiation. Mol Cell Neurosci 21:512–520PubMedCrossRefGoogle Scholar
  7. Bull ND, Bartlett PF (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci 25:10815–10821PubMedCrossRefGoogle Scholar
  8. Campbell JC, Kippin TE (2010) The interaction of neural stem cells and chronic alcohol consumption. In Drug Addiction and Adult Neurogenesis. M.F. Olive (ED). Research Signpost/Transworld Research Network PublishersGoogle Scholar
  9. Coe CL, Kramer M, Czéh B et al (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034PubMedCrossRefGoogle Scholar
  10. Coles-Takabe BLK, Brain I, Purpura KA et al (2008) Don’t look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26:2938–2944PubMedCrossRefGoogle Scholar
  11. Councill JH, Tucker ES, Haskell GT et al (2006) Limited influence of olanzapine on adult forebrain neural precursors in vitro. Neurosci 140:111–122CrossRefGoogle Scholar
  12. Curtis MA, Waldvogel HJ, Synek B et al (2005) A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington’s disease brain. J Chem Neuroanat 30:55–66PubMedCrossRefGoogle Scholar
  13. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134PubMedCrossRefGoogle Scholar
  14. Doetsch F, Petreanu L, Caille I et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034PubMedCrossRefGoogle Scholar
  15. Enwere E, Shingo T, Gregg C et al (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365PubMedCrossRefGoogle Scholar
  16. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  17. Golmohammadi MG, Blackmore DG, Large B et al (2008) Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells 26:979–987PubMedGoogle Scholar
  18. Heo C, Chang K-A, Choi HS et al (2007) Effects of the monomeric, oligomeric, and fibrillar Aβ42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem 102:493–500PubMedCrossRefGoogle Scholar
  19. Higashi M, Maruta N, Bernstein A et al (2008) Mood stabilizing drugs expand the neural stem cell pool in the adult brain through activation of Notch signaling. Stem Cells 26:1758–1767PubMedCrossRefGoogle Scholar
  20. Hitoshi S, Alexson T, Tropepe V et al (2002a) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858PubMedCrossRefGoogle Scholar
  21. Hitoshi S, Tropepe V, Sirard C et al (2002b) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129:233–244PubMedGoogle Scholar
  22. Hitoshi S, Seaberg RM, Koscik C et al (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18:1806–1811PubMedCrossRefGoogle Scholar
  23. Hitoshi S, Maruta N, Higashi M et al (2007) Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress. J Neurosci Res 85:3574–3585PubMedCrossRefGoogle Scholar
  24. Holick KA, Lee DC, Hen R et al (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33:406–417PubMedCrossRefGoogle Scholar
  25. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832PubMedGoogle Scholar
  26. Jessberger S, Clemenson Jr GD, Gage FH (2007) Spontaneous fusion and non-clonal growth of adult neural stem cells. Stem Cells 25:871–874PubMedCrossRefGoogle Scholar
  27. Kasper S, McEwen BS (2008) Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs 22:15–26PubMedCrossRefGoogle Scholar
  28. Kippin TE, Cain SW, Masum Z et al (2004) Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain. J Neurosci 24:2832–2836PubMedCrossRefGoogle Scholar
  29. Kippin T, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823PubMedCrossRefGoogle Scholar
  30. Kippin TK, Szumlinski KK, Kapasova Z et al (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33:769–782PubMedCrossRefGoogle Scholar
  31. Koenig JI, Elmer GI, Shepard PD et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261PubMedCrossRefGoogle Scholar
  32. Kondo M, Wagers AJ, Manz MG et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806PubMedCrossRefGoogle Scholar
  33. Lemaire V, Koehl M, Le Moal M et al (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037PubMedCrossRefGoogle Scholar
  34. Lie DC, Song H, Colamarino SA et al (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421PubMedCrossRefGoogle Scholar
  35. Lim DA, Huang YC, Alvarez-Buylla A (2007) The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 18:81–92PubMedCrossRefGoogle Scholar
  36. Lópes-Toledano MA, Shelanski ML (2004) Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J Neurosci 24:5439–5444CrossRefGoogle Scholar
  37. Louis SA, Rietze RL, Deleyrolle L et al (2008) Enumeration of neural stem and progenitor cells in the neural colony forming cell assay. Stem Cells 26:988–996PubMedGoogle Scholar
  38. Melchiorri D, Cappuccio I, Ciceroni C et al (2007) Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology 53:473–480PubMedCrossRefGoogle Scholar
  39. Morshead CM, Craig CG, van der Kooy D (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125:2251–2261PubMedGoogle Scholar
  40. Morshead CM, Benveniste P, Iscove NN et al (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Med 8:268–273PubMedCrossRefGoogle Scholar
  41. Morshead CM, Garcia D, Sofroniew MV et al (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84PubMedCrossRefGoogle Scholar
  42. Murayama A, Matsuzaki Y, Kawaguchi A et al (2002) Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J Neurosci Res 69:837–847PubMedCrossRefGoogle Scholar
  43. Ortega-Perez I, Murray K, Lledo PM (2007) The how and why of adult neurogenesis. J Mol Histol 38:555–562PubMedCrossRefGoogle Scholar
  44. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404PubMedCrossRefGoogle Scholar
  45. Picard-Riera N, Nati-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 6:223–231CrossRefGoogle Scholar
  46. Ray J, Gage FH (2006) Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol Cell Neurosci 31:560–573PubMedCrossRefGoogle Scholar
  47. Reif A, Schmitt A, Fritzen S et al (2007) Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci 257:290–299PubMedCrossRefGoogle Scholar
  48. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedCrossRefGoogle Scholar
  49. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574PubMedGoogle Scholar
  50. Rietze RL, Valcanis H, Brooker GF et al (2001) Purification of a pluripotent neural stem cells from the adult mouse brain. Nature 412:736–739PubMedCrossRefGoogle Scholar
  51. Sahay A, Drew MR, Hen R (2007) Dentate gyrus neurogenesis and depression. Prog Brain Res 163:697–722PubMedCrossRefGoogle Scholar
  52. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793PubMedGoogle Scholar
  53. Seaberg RM, Smukler SR, van der Kooy D (2005) Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain. Dev Biol 278:71–85PubMedCrossRefGoogle Scholar
  54. Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54:338–352PubMedCrossRefGoogle Scholar
  55. Singec I, Knoth R, Meyer RP et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Method 3:801–806CrossRefGoogle Scholar
  56. Smukler SR, Runciman SB, Xu S et al (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90PubMedCrossRefGoogle Scholar
  57. Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Biol 9:135–141CrossRefGoogle Scholar
  58. Torroglosa A, Murillo-Carretero M, Romero-Grimaldi C et al (2007) Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway. Stem Cells 25:88–97PubMedCrossRefGoogle Scholar
  59. Tropepe V, Sibilia M, Ciruna BG et al (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188PubMedCrossRefGoogle Scholar
  60. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966PubMedCrossRefGoogle Scholar
  61. Wang JM, Liu L, Brinton RD (2008) Estradiol-17beta-induced human neural progenitor cell proliferation is mediated by an estrogen receptor beta-phosphorylated extracellularly regulated kinase pathway. Endocrinology 149:208–218PubMedCrossRefGoogle Scholar
  62. Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  63. Won Sj, Kim SH, Xie L et al (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 8:250–259CrossRefGoogle Scholar
  64. Xu Y, Kitada M, Yamaguchi M et al (2006) Increase in bFGF-responsive neural progenitor population following contusion injury of the adult rodent spinal cord. Neurosci Lett 397:174–179PubMedCrossRefGoogle Scholar
  65. Yang Z, Levison SW (2006) Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone. Neuroscience 139:555–564PubMedCrossRefGoogle Scholar
  66. Young KM, Fogarty M, Kessaris N et al (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Seiji Hitoshi
    • 1
    • 2
  • Tod Kippin
    • 3
    • 4
  • Derek van der Kooy
    • 5
  1. 1.Division of Neurobiology and BioinformaticsNational Institute for Physiological SciencesOkazakiJapan
  2. 2.Department of Physiological Sciences, School of Life SciencesGraduate University for Advanced StudiesKanagawaJapan
  3. 3.Department of PsychologyUniversity of CaliforniaSanta BarbaraUSA
  4. 4.The Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUSA
  5. 5.Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations