Skip to main content

Culturing Adult Neural Stem Cells: Application to the Study of Neurodegenerative and Neuropsychiatric Pathology

  • Chapter
Neurogenesis in the Adult Brain II

Abstract

Stem cells exist in many, perhaps all, adult tissues and serve the common function of a reservoir of precursors that can mediate cell turnover or repair damage. Among tissue-specific stem cell populations, neural stem cells are particularly amenable to study because they are readily isolated and cultured in simple culture systems that allow demonstration of cell-autonomous self-renewal and multipotentiality. Here, we describe the most widely employed culture system, the neurosphere assay, used to reveal these cardinal properties of neural stem cells which respond to specific growth factors and proliferate in serum-free media to form clonal sphere colonies. Although several pitfalls and limitations exist, the neurosphere assay can provide detailed information about kinetics and behavior of neural stem cells when utilized under appropriate conditions. Further, the neurosphere assay together with histochemical analysis using nucleotide analog labeling may be applied to estimate the number and cellular kinetics of neural stem cells in the adult brain under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado T, Monory K, Palazuelos J et al (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19:1704–1706

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758

    Article  PubMed  Google Scholar 

  • Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320

    Article  PubMed  CAS  Google Scholar 

  • Batista CM, Kippin TE, Willaime-Morawek S et al (2006) A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington’s disease R6/2 mouse. J Neurosci 26:10452–10460

    Article  PubMed  CAS  Google Scholar 

  • Brännvall K, Korhonen L, Lindholm D (2002) Estrogen-receptor-dependent regulation of neural stem cell proliferation and differentiation. Mol Cell Neurosci 21:512–520

    Article  PubMed  Google Scholar 

  • Bull ND, Bartlett PF (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci 25:10815–10821

    Article  PubMed  CAS  Google Scholar 

  • Campbell JC, Kippin TE (2010) The interaction of neural stem cells and chronic alcohol consumption. In Drug Addiction and Adult Neurogenesis. M.F. Olive (ED). Research Signpost/Transworld Research Network Publishers

    Google Scholar 

  • Coe CL, Kramer M, Czéh B et al (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Coles-Takabe BLK, Brain I, Purpura KA et al (2008) Don’t look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26:2938–2944

    Article  PubMed  Google Scholar 

  • Councill JH, Tucker ES, Haskell GT et al (2006) Limited influence of olanzapine on adult forebrain neural precursors in vitro. Neurosci 140:111–122

    Article  CAS  Google Scholar 

  • Curtis MA, Waldvogel HJ, Synek B et al (2005) A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington’s disease brain. J Chem Neuroanat 30:55–66

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Petreanu L, Caille I et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Enwere E, Shingo T, Gregg C et al (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Golmohammadi MG, Blackmore DG, Large B et al (2008) Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells 26:979–987

    PubMed  Google Scholar 

  • Heo C, Chang K-A, Choi HS et al (2007) Effects of the monomeric, oligomeric, and fibrillar Aβ42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem 102:493–500

    Article  PubMed  CAS  Google Scholar 

  • Higashi M, Maruta N, Bernstein A et al (2008) Mood stabilizing drugs expand the neural stem cell pool in the adult brain through activation of Notch signaling. Stem Cells 26:1758–1767

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Alexson T, Tropepe V et al (2002a) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Tropepe V, Sirard C et al (2002b) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129:233–244

    PubMed  CAS  Google Scholar 

  • Hitoshi S, Seaberg RM, Koscik C et al (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18:1806–1811

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Maruta N, Higashi M et al (2007) Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress. J Neurosci Res 85:3574–3585

    Article  PubMed  CAS  Google Scholar 

  • Holick KA, Lee DC, Hen R et al (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33:406–417

    Article  PubMed  CAS  Google Scholar 

  • Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832

    PubMed  CAS  Google Scholar 

  • Jessberger S, Clemenson Jr GD, Gage FH (2007) Spontaneous fusion and non-clonal growth of adult neural stem cells. Stem Cells 25:871–874

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, McEwen BS (2008) Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs 22:15–26

    Article  PubMed  CAS  Google Scholar 

  • Kippin TE, Cain SW, Masum Z et al (2004) Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain. J Neurosci 24:2832–2836

    Article  PubMed  CAS  Google Scholar 

  • Kippin T, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823

    Article  PubMed  CAS  Google Scholar 

  • Kippin TK, Szumlinski KK, Kapasova Z et al (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33:769–782

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Kondo M, Wagers AJ, Manz MG et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    Article  PubMed  CAS  Google Scholar 

  • Lemaire V, Koehl M, Le Moal M et al (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037

    Article  PubMed  CAS  Google Scholar 

  • Lie DC, Song H, Colamarino SA et al (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421

    Article  PubMed  CAS  Google Scholar 

  • Lim DA, Huang YC, Alvarez-Buylla A (2007) The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 18:81–92

    Article  PubMed  Google Scholar 

  • Lópes-Toledano MA, Shelanski ML (2004) Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J Neurosci 24:5439–5444

    Article  Google Scholar 

  • Louis SA, Rietze RL, Deleyrolle L et al (2008) Enumeration of neural stem and progenitor cells in the neural colony forming cell assay. Stem Cells 26:988–996

    PubMed  Google Scholar 

  • Melchiorri D, Cappuccio I, Ciceroni C et al (2007) Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology 53:473–480

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Craig CG, van der Kooy D (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125:2251–2261

    PubMed  CAS  Google Scholar 

  • Morshead CM, Benveniste P, Iscove NN et al (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Med 8:268–273

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Garcia D, Sofroniew MV et al (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84

    Article  PubMed  Google Scholar 

  • Murayama A, Matsuzaki Y, Kawaguchi A et al (2002) Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J Neurosci Res 69:837–847

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Perez I, Murray K, Lledo PM (2007) The how and why of adult neurogenesis. J Mol Histol 38:555–562

    Article  PubMed  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  PubMed  CAS  Google Scholar 

  • Picard-Riera N, Nati-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 6:223–231

    Article  Google Scholar 

  • Ray J, Gage FH (2006) Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol Cell Neurosci 31:560–573

    Article  PubMed  CAS  Google Scholar 

  • Reif A, Schmitt A, Fritzen S et al (2007) Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci 257:290–299

    Article  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF et al (2001) Purification of a pluripotent neural stem cells from the adult mouse brain. Nature 412:736–739

    Article  PubMed  CAS  Google Scholar 

  • Sahay A, Drew MR, Hen R (2007) Dentate gyrus neurogenesis and depression. Prog Brain Res 163:697–722

    Article  PubMed  CAS  Google Scholar 

  • Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793

    PubMed  CAS  Google Scholar 

  • Seaberg RM, Smukler SR, van der Kooy D (2005) Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain. Dev Biol 278:71–85

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54:338–352

    Article  PubMed  Google Scholar 

  • Singec I, Knoth R, Meyer RP et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Method 3:801–806

    Article  CAS  Google Scholar 

  • Smukler SR, Runciman SB, Xu S et al (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90

    Article  PubMed  CAS  Google Scholar 

  • Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Biol 9:135–141

    Article  CAS  Google Scholar 

  • Torroglosa A, Murillo-Carretero M, Romero-Grimaldi C et al (2007) Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway. Stem Cells 25:88–97

    Article  PubMed  CAS  Google Scholar 

  • Tropepe V, Sibilia M, Ciruna BG et al (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    Article  PubMed  CAS  Google Scholar 

  • Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    Article  PubMed  Google Scholar 

  • Wang JM, Liu L, Brinton RD (2008) Estradiol-17beta-induced human neural progenitor cell proliferation is mediated by an estrogen receptor beta-phosphorylated extracellularly regulated kinase pathway. Endocrinology 149:208–218

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Won Sj, Kim SH, Xie L et al (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 8:250–259

    Article  Google Scholar 

  • Xu Y, Kitada M, Yamaguchi M et al (2006) Increase in bFGF-responsive neural progenitor population following contusion injury of the adult rodent spinal cord. Neurosci Lett 397:174–179

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Levison SW (2006) Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone. Neuroscience 139:555–564

    Article  PubMed  CAS  Google Scholar 

  • Young KM, Fogarty M, Kessaris N et al (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Hitoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Hitoshi, S., Kippin, T., van der Kooy, D. (2011). Culturing Adult Neural Stem Cells: Application to the Study of Neurodegenerative and Neuropsychiatric Pathology. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain II. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53945-2_10

Download citation

Publish with us

Policies and ethics