Skip to main content

Fractones: Home and Conductors of the Neural Stem Cell Niche

  • Chapter
Book cover Neurogenesis in the Adult Brain I

Abstract

Throughout life, neural stem cells proliferate and differentiate in restricted zones of the brain, termed niches, to produce new neurons and glial cells. In these niches, growth factors and extracellular matrix (ECM) molecules determine the fate of neural stem and progenitor cells (NSPC). However, the precise compounds and the mechanisms that regulate growth factors and other signaling molecules in the niches are unknown. Based on the evidence that NSPCs proliferate next to blood vessels in the dentate gyrus, the concept of a vascular niche for neurogenesis has been initially proposed. In the subventricular zone of the lateral ventricle, the most neurogenic zone in adulthood, we have found that NSPC directly contact a novel type of ECM structure that we have named fractones. Fractones contain heparan sulfate proteoglycans (HSPG) that collect and concentrate the neurogenic growth factor FGF2 at the NSPC surface and likely direct its signaling via tyrosine kinase receptors. Our preliminary results indicate that FGF2 binding to fractone-HSPG is essential for activating FGF2 at the NSPC surface. Moreover, we have found fractones express diverse HSPG at the surface of proliferating NSPC during development, even before the brain vasculature emerges. Therefore, fractones hold considerable promise for promoting growth factors at the stem cell surface to ultimately regulate neurogenesis during development and adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman, J. (1963). Autoradiographic investigation of cell proliferation in the brain of cats and rats. Anat. Rec. 145, 573–591.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–458.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., Das, G.D. (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special references to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126, 337–390.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, A., Nottebohm, F. (1988). Migration of young neurons in adult avian brain. Nature 335, 353–354.

    Article  CAS  Google Scholar 

  • Aviezer, D., Hecht, D., Safran, M., Elsinger, M. David, G., Yayon, A. (1994). Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M.T., Spring, J., Gallo, R.L. (1992). Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–93.

    Article  PubMed  CAS  Google Scholar 

  • Bernfield, M., Banerjee, S.D., Koda, J.E., Rapraeger, A.C. (1994). Remodelling of basement membranes as a mechanism of morphogenetic tissue interactions. In: Trelstadt, R.L. (ed) The role of extracellular matrix in development. New York, Liss, A.R.

    Google Scholar 

  • Bernfield, M., Gotte, M., Park, P., Reizes, O., Fitzgerald, M., Lincecum, J., Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777.

    Article  PubMed  CAS  Google Scholar 

  • Blanpain, C., Lowry, W., Georghegan, A., Polak, L., Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648.

    Article  PubMed  CAS  Google Scholar 

  • Brickman, Y.G., Ford, M.D., Small, D.H., Bartlett, P.F., Nurcombe, V. (1995). Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells. J. Biol. Chem. 270, 24941–24948.

    Article  PubMed  CAS  Google Scholar 

  • Brickman, Y., Ford, M., Gallagher, J., Nurcombe, V., Bartlett, P., Turnbull, J. (1998). Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J. Biol. Chem. 8:5, 4350–4359.

    Google Scholar 

  • Brightman, M.W. (1965). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. J. Cell Biol. 26, 99–123.

    Article  PubMed  CAS  Google Scholar 

  • Brightman, M.W. (2002). The brain’s interstitial clefts and their glial walls. J. Neurocytol. 31, 595–603.

    Article  PubMed  CAS  Google Scholar 

  • Chadashvili, T., Peterson, D. (2006). Cytoarchitecture of fibroblast growth factor receptor 2 (FGFR-2) immunoreactivity in astrocytes of neurogenic and non-neurogenic regions of the young adult and aged rat brain. J. Comp. Neurol. 498:1, 1–15.

    Google Scholar 

  • Chang, Z., Meyer, K., Rapraeger, A.C., Friedl, A. (2000). Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J. 14, 137–144.

    PubMed  CAS  Google Scholar 

  • Craig, CG, Tropepe, V, Morshead, CM, Reynolds, BA, Weiss, S, van der Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658.

    Google Scholar 

  • Doetsch, F., Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, F., Garcia-Verdugo, J.M., Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization in the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061.

    PubMed  CAS  Google Scholar 

  • Falk, A., Frisen, J. (2002). Amphiregulin is a mitogen for adult neural stem cells. J. Neurosci. Res. 69, 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, M., Hayward, I.P., Thomas, A.C., Campbell, G.R., Campbell, J.H. (1999). Matrix metalloproteinase can facilitate the heparanase-induced promotion of phenotype change in vascular smooth muscle cells. Atherosclerosis 145:1, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, J.T. (2001). Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108:3, 357–361

    PubMed  CAS  Google Scholar 

  • Goodger, S., Robinson, C., Murphy, K., Gasiunas, N., Harmer, N., Blundell, T., Pye, D., Gallagher, J. (2008). Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283, 13001–13008.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, M.Y., Riley, G.P., Watt, S.M., Greaves, M.F. (1987). Compartmentalization of a haematopoeitic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326, 403–405.

    Article  CAS  Google Scholar 

  • Grobe, K., Ledin, J., Ringvall, M., Holmborn, K., Forsberg, E., Esko, J.D., Kjellén, L. (2002). Heparan sulfate and development: differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochim. Biophys. Acta 1573:3, 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Guimond, S., Maccarana, M., Olwin, B., Lindahl, U., Rapraeger, A. (1993). Activating and inhibitory heparin sequences for FGF-2 (basic FGF) distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906–23914.

    PubMed  CAS  Google Scholar 

  • Halfter, W. (1998). Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitral endfeet, an increase number of ganglion cells, and aberrant axonal outgrowth. J. Comp. Neurol. 397, 99–104.

    Google Scholar 

  • Hayamizu, T.F., Chan, P.T., Johanson, C.E. (2001). FGF-2 immunoreactivity in adult rat ependyma and choroid plexus: responses to global forebrain ischemia and intraventricular FGF-2. Neurol. Res. 23, 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Hienola, A., Pekkanen, M., Raulo, E., (2004). HB-GAM inhibits proliferation and enhances differentiation of neural stem cells. Mol. Cell. Neurosci. 26, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Hienola, A., Tumova, S., Kulesskiy, E., Rauvala, H. (2006). N-syndecan deficiency impairs neural migration in the brain. J. Cell Biol. 174, 569–580.

    Article  PubMed  CAS  Google Scholar 

  • Iozzo, R.V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell. Biol. 6, 646–656.

    Article  PubMed  CAS  Google Scholar 

  • Jasuja, R., Allen, B., Pappano, W., Rapraeger, A., Greenspan, D. (2004). Cell-surface heparen sulfate proteoglycans chordin antagonism of bone morphogenetic protein signaling and are necessary for cellular uptake of chordin. J. Biol. Chem. 279, 51289–51297.

    Article  PubMed  CAS  Google Scholar 

  • Jayson, G.C., Lyon, M., Paraskeva, C., Turnbull, J.E., Deakin, J.A., Gallagher, J.T. (1998). Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J. Biol. Chem. 273:1, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Kaji, T., Yamamoto, C., Oh-i, M., Fujiwara, Y., Yamazaki, Y., Morita, T., Plaas, A.H., Wight, T.N. (2006). The vascular endothelial growth factor VEGF165 induces perlecan synthesis via VEGF receptor-2 in cultured human brain microvascular endothelial cells. Biochim. Biophys. Acta 1760:9, 1465–1474.

    Article  PubMed  CAS  Google Scholar 

  • Kerever, A., Schnack, J., Vellinga, D., Ichikawa, N., Moon, C., Arikawa-Hirasawa, E., Efird, J.T., Mercier, F. (2007). Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor FGF-2 from the extracellular milieu. Stem Cells 25, 2146–2157.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C.W., Goldberger, O.A., Gallo, R.L., Bernfield, M. (1994). Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-,tissue-, and development-specific patterns. Mol. Biol. Cell 5, 797–805.

    PubMed  CAS  Google Scholar 

  • Kim, S.J., Son, T.G., Kim, K., Park, H.R., Mattson, M.P., Lee, J. (2007). Interferon-gamma promotes differentiation of neural progenitor cells via the JNK pathway. Neurochem. Res. 32, 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  • Klein, G., Conzelmann, S., Beck, S., Timpl, R., Müller, C.A. (1995). Perlecan in human bone marrow: a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Knox, S., Merry, C., Stringer, S., Melrose, J., Whitelock, J. (2002). Not all perlecans are created equal. J. Biol. Chem. 277, 14657–14665.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Shimada, K., Ozawa, T. (1992). Human platelet-derived transforming growth factor-beta stimulates synthesis of glycosaminoglycans in cultured porcine aortic endothelial cells. Gerontology 38, 36–42.

    Article  PubMed  Google Scholar 

  • Kuhn, H.G., Winkler, J., Kempermann, G. Thal, L.J., Gage, F.H. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5827.

    PubMed  CAS  Google Scholar 

  • Lamanna, W.C., Baldwin, R.J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T.H., Gallagher, J.T., von Figura, K., Dierks, T., Merry, C.L. (2006). Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem. J. 400, 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Langsdorf, A., Do, A.T., Kusche-Gullberg, M., Emerson, C.P. Jr, Ai, X. (2007). Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev. Biol. 311:2, 464–477.

    Google Scholar 

  • Lim, D., Tramontin, A., Trevejo, J., Herrera, D., Garcia-Verdugi, J., Alvarez-Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, U., Kusche-Gullberg, M., Kjellen, L. (1998). Regulated diversity of heparan sulfate. J. Biol. Chem. 273:29, 24979–24982.

    Article  PubMed  CAS  Google Scholar 

  • Litwack, E.D., Ivins, J.K., Kumbasor, A., Paine-Saunolers, S., Stipp, C.S., Lanoler, A.D. (1998). Expression of the heparan sulfate proteoglycon glypicon-1 in the developing rodent. Dev. Dyn. 211, 72–87.

    Article  PubMed  CAS  Google Scholar 

  • Lois, C., Alvarez-Buylla, A. (1994). Long distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Lortat-Jacob, H., Grimaud, J.A. (1991). Interferon-gamma C-terminal function: networking hypothesis. Heparan sulfate and heparin, new targets for IFNGamma, protect, relax the cytokine and regulate its activity. Cell Mol. Biol. 37:3, 253–260.

    PubMed  CAS  Google Scholar 

  • Mandelbrot, B.B. (ed) (1983). The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Martens, D.J., Seaber, R.M., van der Kooy, D. (2002). In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur. J. Neurosci. 16, 1045–1057.

    Article  PubMed  Google Scholar 

  • Mercier, F. (2004). Astroglia as a modulation interface between meninges and neurons. In: Hatton, G.I., Parpura, V. (eds) Glial/neuronal signaling. Amsterdam, Kluwer Pub, 125–162.

    Google Scholar 

  • Mercier, F., Hatton, G.I. (2000). Immunocytochemical basis for a meningeo-glial network. J. Comp. Neurol. 420, 445–465.

    Article  PubMed  CAS  Google Scholar 

  • Mercier, F., Hatton, G.I. (2001). Connexin 26 and bFGF are primarily expressed in subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity? J. Comp. Neurol. 431, 88–104.

    Article  PubMed  CAS  Google Scholar 

  • Mercier, F., Hatton, G.I. (2004). Meninges and perivasculature as mediators of CNS plasticity. In: Bittar, E.E., Hertz, L. (eds.) Non-neuronal cells in the nervous system: function and dysfunction. Elsevier Bioscience, Amsterdam, Adv. Mol. Cell. Biol. 31, 215–253.

    Google Scholar 

  • Mercier, F., Kitasako, J.T., Hatton, G.I. (2002). Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451, 170–188.

    Article  PubMed  Google Scholar 

  • Mercier, F., Kitasako, J.T., Hatton, G.I. (2003). Fractones and other basal laminae in the hypothalamus. J. Comp. Neurol. 455, 324–340.

    Article  PubMed  Google Scholar 

  • Mohammadi, M., Olsen, S.K., Ibrahimi, O.A. (2005). Structural basis for fibroblast receptor activation. Cyt. Growth Fact. Rev. 16, 107–137.

    Article  PubMed  CAS  Google Scholar 

  • Monje, M.L., Toda, H., Palmer, T.D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science, 302, 1760–1765.

    Article  PubMed  CAS  Google Scholar 

  • Mulloy, B., Forster, M.J., Jones, C., Drake, A.F., Johnson, E.A., Davies, D.B. (1994). The effect of variation of substitution on the solution conformation of heparin: a spectroscopic and molecular modelling study. Carbohydr. Res. 255, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Nakato, H., Kimata, K. (2002). Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim. Biophys. Acta 1573:3, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Narita, K., Chien, J., Mullany, S.A., Staub, J., Qian, X., Lingle, W.L., Shridhar, V. (2007). Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol. Chem. 282:19, 14413–14420.

    Article  PubMed  CAS  Google Scholar 

  • Nawroth, R., Zante, A., Cervantes, S., McManus, M., Helbrok, M., Rosen, S. (2007). Extracellular sulfatases, elements of the WNT signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS One 2:4, 1–11.

    Google Scholar 

  • Ornitz, D.M., Yayon, A., Flanagan, J.G., Svahn, C.M., Levi, E., Leder, P. (1992). Heparin is required for cell-free binding of basic fibroblastic growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 12, 240–247.

    PubMed  CAS  Google Scholar 

  • Paine-Saunders, S., Vivano, B., Economides, A., Saunders, S. (2002). Heparan sulfate proteoglycans retain noggins at the cell surface: a potential mechanism for shaping bone morphogenic protein gradients. J. Biol. Chem. 277, 2089–2096.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T.D., Ray, J., Gage, F.H. (1995). FGF-2 responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T.D., Willhoite, A.R., Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494.

    Article  PubMed  CAS  Google Scholar 

  • Pencea, V., Bingaman, K.D., Wiegand, S.J., Luskin, M.B. (2001). Infusion of brain derived neurotrophic growth factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706–6717.

    PubMed  CAS  Google Scholar 

  • Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M., Santoro, G., Savettieri, G., Di Liegro, I. (2008). Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int. J. Mol. Med. 21, 63–67.

    PubMed  CAS  Google Scholar 

  • Properzi, F., Lin, R., Kwok, J., Naidu, M., Van Kuppevelt, T., Dam, G., Camargo, L., Raha-Chowdhury, R., Furukawa, Y., Mikami, T., Sugahara, K. (2008). Heparan sulphate proteoglycan in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur. J. Neurosci. 27, 593–604.

    Google Scholar 

  • Rapraeger, A. (1995). In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding. Chem. Biol. 2, 137–144.

    Article  Google Scholar 

  • Reiland, J., Rapraeger, A.C. (1993). Heparan sulfate protoglycan and FGF receptor target basic FGF to different intracellular destinations. J. Cell Sci. 105, 1085–1093.

    PubMed  CAS  Google Scholar 

  • Rider, C.C. (2006). Heparin/heparan sulphate binding in the TGF-beta cytokine super family. Biochem. Soc. Trans. 34, 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R., Gallagher, J., Spooncer, E., Allen, T.D., Bloomfield, F., Dexter, T.M. (1988). Heparan sulfate bond growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332, 376–378.

    Article  CAS  Google Scholar 

  • Sakaguchi, K., Lorenzi, M.V., Bottaro, D.P., Miki, T. (1999). The acidic domain and first immunoglobulin-like loop of fibroblast growth factor receptor 2 modulate downstream signaling through glycosaminoglycan modification. Mol. Cell. Biol. 19, 6754–6764.

    PubMed  CAS  Google Scholar 

  • Saksela, O., Moscatelli, D., Sommer, A., Rifkin, D.B. (1988). Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107:2, 743–51.

    Article  PubMed  CAS  Google Scholar 

  • Sawamoto, K., Wichterle, H., Gonzalez-Perez, O., Choifin, J.A., Yamada, M., Spassky, N., Murcia, N.S., Garcia-Verdugo, J.M., Marin, O., Rubenstein, J.L.M., Tessier-Lavigne, M., Okano, H., Alvarez-Buylla, A. (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 626–632.

    Article  Google Scholar 

  • Seaberg, R.M., van der Kooy, D. (2002). Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci. 22, 1784–1793.

    PubMed  CAS  Google Scholar 

  • Seki, T., Array, Y. (1993). Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J. Neurosci. 13, 2351–2358.

    PubMed  CAS  Google Scholar 

  • Seri, B., Herrera, D.G., Gritti, A., Ferron, S., Collado, L., Vescovi, A., Garcia-Verdugo, J.M., Alvarez-Buylla, A. (2006). Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb. Cortex 16, 103–111.

    Article  Google Scholar 

  • Sharma, B., Iozzo, R. (1998). Transcriptional silencing of perlecan gene expression by interferon. J. Biol. Chem. 273, 4642–4646.

    Article  PubMed  CAS  Google Scholar 

  • Smits, N.C., Robbesom, A.A., Versteeg, E.M., van de Westerlo, E.M., Dekhuijzen, P.N., van Kuppevelt, T.H. (2004). Heterogeneity of heparan sulfates in human lung. Am. J. Respir. Cell Mol. Biol. 30, 166–173.

    Article  PubMed  CAS  Google Scholar 

  • Stopa, E.G., Berzin, T.M., Kim, S., Song, P., Kuo-Leblanc, V., Rodriguez-Wolf, M., Baird, A., Johanson, C.E. (2001). Choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp. Neurol. 167, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Stringer, S., Gallagher, J. (1997). Heparan sulfate. Int. J. Biochem. Cell Biol. 29:5, 709–714.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E., Pettersson, I., Eriksson, U.J., Lindahl, U., Kjellén, L. (1991). Decreased activity of the heparan sulfate-modifying enzyme glucosaminyl N-deacetylase in hepatocytes from streptozotocin-diabetic rats. J. Biol. Chem. 266:14, 43–961.

    Google Scholar 

  • Venkataraman, G., Sasisekharan, V., Herr, A.B., Ornitz, D.M., Waksman, G., Cooney, C.L., Langer, R., Sasisekharan, R. (1996). Preferential self-association of basic fibroblastic growth factor is stabilized by heparin during receptor dimerization and activation. Proc. Natl. Acad. Sci. USA 93, 845–890.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Korner, G., Ishai-Michaeli, R., Bashkin, P., Bar-Shavit, R., Fuks, Z. (1990). Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev. 32:3, 313–318

    Google Scholar 

  • Walker, A., Turnbul, J., Gallagher, J. (1994). Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J. Biol. Chem. 269:2, 931–935.

    PubMed  CAS  Google Scholar 

  • Weiss, S., Dunne, C., Hewson, J. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  • Westling, C., Lindahl, U. (2002). Location of N-unsubstituted glucosamine residues in heparan sulfate. J. Biol. Chem. 277:51, 49247–49255.

    Article  PubMed  CAS  Google Scholar 

  • Wexler, E.M., Geschwind, D.H., Palmer, T.D. (2007). Lithium regulates adult hippocampal progenitor development through canonical wnt pathway activation. Mol. Psychiatr. 13:285–292.

    Article  Google Scholar 

  • Whitelock, J., Murdoch, A., Iozzo, R., Underwood, A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basis fibroblast growth factor by stromelysin collagenase, plasmin, and heparanases. J. Biol. Chem. 271:17, 10079–10086.

    Google Scholar 

  • Wieseler-Frank, J., Jekich, B.M., Mahoney, J.H., Bland, S.T., Maier, S.F., Watkins, L.R. (2007). A novel immune to CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory cytokine. Brain Behav. Immun. 21, 711–718.

    Article  PubMed  CAS  Google Scholar 

  • Wurmser, H.M, Palmer, T.D., Gage, F.H. (2004). Neuroscience-Cellular interactions in the stem cell niches. Science 304, 1253–1255.

    Article  Google Scholar 

  • Yang, W.D., Gomes, R.R. Jr, Alicknavitch, M., Farach-Carson, M.C., Carson, D.D. (2005). Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. Tissue Eng. 11:1–2, 76–89.

    Article  PubMed  CAS  Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., Ornitz, D.P. (1991). Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Yurchenko, P.D., Schyttny, J.C. (1990). Molecular architecture of basement membranes. FASEB J. 4, 1577–1590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Mercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Mercier, F., Schnack, J., Chaumet, M.S.G. (2011). Fractones: Home and Conductors of the Neural Stem Cell Niche. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_4

Download citation

Publish with us

Policies and ethics